Effect of nanotubes on the electrical and mechanical properties of chitosan films
Kamalov A. M.1, Kodolova-Chukhontseva V. V.1, Dresvyanina E.N.2, Maslennikova T. P.3, Dobrovolskaya I. P.4, Ivan'kova E. M.4, Popova E. N.4, Smirnova V. E.4, Yudin V. E. 4
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2St. Petersburg State University of Industrial Technologies and Design, St. Petersburg, Russia
3Grebenschikov Institute of Silicate Chemistry RAS, Saint-Petersburg, Russia
4Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
Email: spb.kamalov@gmail.com
Using the methods of X-ray diffraction and scanning electron microscopy, the structure of composite films based on chitosan and single-wall carbon tubes has been studied. It is shown that the introduction of carbon nanotubes leads to the ordering of the chitosan structure. Increase in concentration of nanotubes (from 0 to 3%) causes rise in the value of storage modulus from 3 to 4 GPa (DMA data), increase in electrical conductivity of samples (from 10-11 to 102 S/m), and some changes in their dielectric permittivity (from 5.5. to 26 at an electrical field frequency of 1 kHz). Data on the ionic and electronic components of the conductivity of the composite film are presented. Keywords: chitosan, electrical conductivity, nanotubes, dielectric constant, composite.
- T.G. Vladkova. Int. J. Polym. Sci., 2010, 1 (2010). DOI: 10.1155/2010/296094
- Z. Liu, X. Wan, Z.L. Wang, L. Li. Adv. Mater., 33, 2007429 (2021). DOI: 10.1002/adma.202007429
- P. Morgan. Carbon Fibers and Their Composites (CRC Press, 2005). DOI: 10.1201/9781420028744
- I.V. Mitrofanova, I.V. Milto, I.V. Suhodolo, G.Y. Vasyukov. Bull. Sib. Med., 13, 135 (2014). DOI: 10.20538/1682-0363-2014-1-135-144
- B. Guo, P.X. Ma. Biomacromolecules, 19, 1764 (2018). DOI: 10.1021/acs.biomac.8b00276
- V.V. Matrenichev, P.V. Popryadukhin, A.E. Kryukov, N.V. Smirnova, E.M. Ivan'kova, I.P. Dobrovol'skaya, V.E. Yudin. Polym. Sci. Ser. A, 60, 215 (2018). DOI: 10.1134/S0965545X18020104
- J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima. J. Am. Chem. Soc., 130, 16778 (2008). DOI: 10.1021/ja805570f
- J. Cheng, M.J. Meziani, Y.-P. Sun, S.H. Cheng. Toxicol. Appl. Pharmacol., 250, 184 (2011). DOI: 10.1016/j.taap.2010.10.012
- B. Pan, D. Cui, P. Xu, C. Ozkan, G. Feng, M. Ozkan, T. Huang, B. Chu, Q. Li, R. He, G. Hu, Nanotechnology, 20, 125101 (2009). DOI: 10.1088/0957-4484/20/12/125101
- A. Abarrategi, M.C. Gutierrez, C. Moreno-Vicente, M.J. Hortiguela, V. Ramos, J.L. Lopez-Lacomba, M.L. Ferrer, F. del Monte. Biomaterials, 29, 94 (2008). DOI: 10.1016/j.biomaterials.2007.09.021
- G.S. Lorite, L. Yla-Outinen, L. Janssen, O. Pitkanen, T. Joki, J.T. Koivisto, M. Kellomaki, R. Vajtai, S. Narkilahti, K. Kordas. Nano Res., 12, 2894 (2019). DOI: 10.1007/s12274-019-2533-2
- V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini. Nano Lett., 5, 1107 (2005). DOI: 10.1021/nl050637m
- M. Rouabhia, H. Park, S. Meng, H. Derbali, Z. Zhang. PLoS One, 8, 1 (2013). DOI: 10.1371/journal.pone.0071660
- B. Reid, M. Zhao. Adv. Wound Care, 3, 184 (2014). DOI: 10.1089/wound.2013.0442
- M.N. Ravi Kumar. React. Funct. Polym., 46, 1 (2000). DOI: 10.1016/S1381-5148(00)00038-9
- E. Stewart, N.R. Kobayashi, M.J. Higgins, A.F. Quigley, S. Jamali, S.E. Moulton, R.M.I. Kapsa, G.G. Wallace, J.M. Crook. Tissue Eng. Pt. C-Meth., 21, 385 (2015). DOI: 10.1089/ten.tec.2014.0338
- J. Yang, G. Choe, S. Yang, H. Jo, J.Y. Lee. Biomater. Res., 20, 1 (2016). DOI: 10.1186/s40824-016-0078-y
- B. Huang. Biomanufacturing Rev., 5, 1 (2020). DOI: 10.1007/s40898-020-00009-x
- I.P. Dobrovol'skaya, P.V. Popryadukhin, A.Y. Khomenko, E.N. Dresvyanina, V.E. Yudin, V.Y. Elokhovskii, S.N. Chvalun, N.N. Saprykina, T.P. Maslennikova, E.N. Korytkova. Polym. Sci. Ser. A, 53, 418 (2011). DOI: 10.1134/S0965545X11050038
- I.P. Dobrovol'skaya, L.I. Slutsker, Z.Yu. Cherejskij, L.E. Utevskij. Vysokomolek. soed. A, 17 (7), 1555 (1975) (in Russian)
- E.N. Dresvyanina, S.F. Grebennikov, I.P. Dobrovol'skaya, T.P. Maslennikova, E.M. Ivan'kova, V.E. Yudin. Polym. Sci. Ser. A, 62, 205 (2020). DOI: 10.1134/S0965545X20030050
- A. Kamalov, E. Dresvyanina, M. Borisova, N. Smirnova, K. Kolbe, V. Yudin. Mater. Today Proc., 30, 798 (2020). DOI: 10.1016/j.matpr.2020.02.346
- C. Gabriel, S. Gabriel, E. Corthout. Phys. Med. Biol., 41, 2231 (1996). DOI: 10.1088/0031-9155/41/11/001
- B. Tsai, H. Xue, E. Birgersson, S. Ollmar, U. Birgersson. J. Electr. Bioimpedance, 10, 14 (2019). DOI: 10.2478/joeb-2019-0003
- J.C. Maxwell. A Treatise on Electricity and Magnetism (Cambridge Univer. Press, Cambridge, 2010)
- X. Xia, Z. Zhong, G.J. Weng. Mech. Mater., 109, 42 (2017). DOI: 10.1016/j.mechmat.2017.03.014
- K.W. Wagner. Archiv f. Elektrotechnik, 2, 371 (1914). DOI: 10.1007/BF01657322
- S. Bonardd, E. Robles, I. Barandiaran, C. Saldias, A. Leiva, G. Kortaberria. Carbohydr. Polym., 199, 20 (2018). DOI: 10.1016/j.carbpol.2018.06.088
- E.N. Dresvyanina, I.P. Dobrovol'skaya, V.E. Smirnov, E.N. Popova, E.N. Vlasova, V.E. Yudin. Polym. Sci. Ser. A, 60, 179 (2018). DOI: 10.1134/S0965545X18020049
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.