Dependence of the electrochemical parameters of composite SiO/C anodes for lithium-ion batteries on the composition and synthesis temperature
Lozhkina D.A.
1, Astrova E.V.
1, Rumyantsev A.M.
11Ioffe Institute, St. Petersburg, Russia
Email: darina.lozhka94@gmail.com, east@mail.ioffe.ru, rumyantsev.amr@gmail.com
The results of a study of anodes obtained by carbonization of silicon monoxide by means of a reaction with solid-phase fluorocarbon CF0.8 are presented. Charge/discharge voltage profiles were studied at different currents depending on the composition and temperature of the synthesis of composites. The irreversible losses of the 1st cycle and the contribution to them of intrinsic losses due to the formation of lithium oxide and its silicates and losses associated with the formation of SEI are analyzed. A difference has been established in the behavior of anodes made of SiO carbonized by annealing with CF0.8 at T=800oC (SiO/C composite) and silicon monoxide annealed with CF0.8 at T>1000oC at which disproportionation occurs simultaneously with the carbonization of SiO (d-SiO/C composite). The difference consisting in a higher discharge capacity, a higher Coulomb efficiency, and better rate capability of d-SiO/C is explained by a change in the composition of the SiOx matrix that occurs during the disproportionation process. The effect of the formation of d-SiO/C anodes by preliminary lithiation with a low current, after which the electrodes can be charged and discharged with much higher currents, has been discovered. The effect is explained by the amorphization of silicon crystallites and the increasing diffusion coefficient of lithium. Keywords: composite anodes SiO/C, lithium-ion batteries, disproportionation silicon monoxide, carbonization with fluorocarbon.
- M.N. Obrovac, V.L. Chevrier. Chem. Rev., 114, 11444 (2014). DOI: 10.1021/cr500207g
- Zh. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai. Chem. Soc. Rev., 48, 285 (2019). DOI: 10.1039/c8cs00441b
- T. Chen, J. Wu, Q. Zhang, X. Su. J. Power Sources, 363, 126 (2017). DOI: 10.1016/j.jpowsour.2017.07.073
- M. Jiao, Y. Wang, C. Ye, C. Wang, W. Zhang, C. Liang. J. Alloy. Compd., 842, 155774 (2020). DOI: 10.1016/j.jallcom.2020.155774
- J.-H. Kim, C.-M. Park, H. Kim, Y.-J. Kim, H.-J. Sohn. J. Electroanalyt. Chem., 661, 245 (2011). DOI: 10.1016/j.jelechem.2011.08.010
- S.C. Jung, H.-J. Kim, J.-H. Kim, Y.-K. Han. J. Phys. Chem. C., 120 (2), 886 (2016). DOI: 10.1021/acs.jpcc.5b10589
- Y. Nagao, H. Sakaguchi, H. Honda, T. Fukunaga, T. Esaka. J. Electrochem. Soc., 151 (10), A1572 (2004). DOI: 10.1149/1.1787173
- M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata. J. Electrochem. Soc., 152 (10), A2089 (2005). DOI: 10.1149/1.2013210
- K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, S. Shimosaki. J. Power Sources, 329, 462 (2016). DOI: 10.1016/j.jpowsour.2016.08.110
- L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahna. Electrochem. Solid-State Lett., 4 (9), A137 (2001). DOI: 10.1149/1.1388178
- T. Kim, S. Park, S.M. Oh. J. Electrochem. Soc., 154, A1112 (2007). DOI: 10.1149/1.2790282
- Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi. J. Electrochem. Soc., 157 (1), A26 (2010). DOI: 10.1149/1.3247598
- J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen, J. Sun. ACS Appl. Mater. Interfaces, 8 (44), 30239 (2016). DOI: 10.1021/acsami.6b10260
- Q. Yuan, F. Zhao, Y. Zhao, Z. Liang, D. Yan. Electrochimica Acta, 115, 16 (2014). DOI: 10.1016/j.electacta.2013.10.106
- M. Yamada, A. Ueda, K. Matsumoto, T. Ohzuku. J. Electrochem. Soc., 158 (4), A417 (2011). DOI: 10.1149/1.3551539
- T. Xu, Q. Wang, J. Zhang, X. Xie, B. Xia. ACS Appl. Mater. Interfac., 11, 19959 (2019). DOI: 10.1021/acsami.9b03070
- L. Guo, H. He, Y. Ren, C. Wang, M. Li. Chem Eng. J., 335, 32 (2017). DOI: 10.1016/j.cej.2017.10.145
- L. Hu, W. Xia, R. Tang, R. Hu, L. Ouyang, T. Sun. H. Wang. Frontiers in Chem., 8, 388 (2020). DOI: 10.3389/fchem.2020.00388
- E.V. Astrova, V.P. Ulin, A.V. Parfeneva, V.B. Voronkov. Tech. Phys. Lett., 45, 664 (2019). DOI: 10.1134/S1063785019070022
- E.V. Astrova, V.P. Ulin, A.V. Parfeneva, A.M. Rumyantsev, V.B. Voronkov, A.V. Nashchekin, V.N. Nevedomskiy, Y.M. Koshtyal, M.V. Tomkovich. J. Alloy. Compd., 826, 154242 (2020). DOI: 10.1016/j.jallcom.2020.154242
- E.V. Astrova, V.P. Ulin, A.V. Parfeneva, A.V. Nashchekin, V.N. Nevedomskiy, M.V. Baydakova. Semiconductors, 54 (8), 900 (2020). DOI: 10.1134/S1063782620080059
- D.A. Lozhkina, E.V. Astrova, A.I. Likhachev, A.V. Parfeneva, A.M. Ryumyantsev, A.N. Smirnov, V.P. Ulin. Tech. Phys., 91 (9), 1381 (2021). DOI: 10.21883/JTF.2021.09.51218.83-21
- D.A. Lozhkina, E.V. Astrova, R.V. Sokolov, D.A. Kirilenko, A.A. Levin, A.V. Parfeneva, V.P. Ulin. Semiconductors, 55 (4), 373 (2021). DOI: 10.1134/S1063782621040096
- A.S. Fialkov. Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Aspekt Press, M., 1997), p. 377-404 (in Russian)
- M. Winter, P. Novak, A. Monnier. J. Electrochem. Soc., 145, 428 (1998). DOI: 10.1149/1.1838281
- T. Tan, P.-K. Lee, D.Y.W. Yu. J. Electrochem. Soc., 166|,(3), A5210 (2019). DOI: 10.1149/2.0321903jes
- J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto. Solid State Ionics, 152-153, 125 (2002). DOI: 10.1016/S0167-2738(02)00362-4
- Ch.-M. Park, W. Choi, Y. Hwa, J.-H. Kim, G. Jeong, H.-J. Sohn. J. Mater. Chem., 20, 4854 (2010). DOI: 10.1039/B923926J
- K. Kitada, O. Pecher, P.C.M.M. Magusin, M.F. Groh, R.S. Weatherup, C.P. Grey. J. Am. Chem. Soc., 141, 7014 (2019). DOI: 10.1021/jacs.9b01589
- Z.B. Stojnov, B.M. Grafov, B.S. Savova-Stojnova, V.V. Elkin. Elektrokhimicheskij impedans (Nauka, M., 1991), p. 336 (in Russian)
- A.V. Churikov, K.I. Pridatko, A.V. Ivanishchev, I.A. Ivanishcheva, I.M. Gamayunova, K.V. Zapsis, V.O. Sycheva. Elektrokhimiya, 44 (5), 594 (2008) (in Russian). DOI: 10.1134/S1023193508050078
- M. Xia, L. Yi-ran, X. Xiong, W. Hu, Y. Tang, N. Zhou, Z. Zhou, H. Zhang. J. Alloy. Compnd., 800, 116e124 (2019). DOI: 10.1016/j.jallcom.2019.05.365
- F. Ozanam, M. Rosso. Mat. Sci. Eng., 213, 2 (2016). DOI: 10.1016/j.mseb.2016.04.016
- H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu, S. Zhang. J. Mech. Phys. Sol., 70, 349 (2014). DOI: 10.1016/j.jmps.2014.06.004
- S. Yoshida, T. Okubo, Y. Masuo, Y. Oba, D. Shibata, M. Haruta, T. Doi, M. Inaba. Electrochemistry, 85 (7), 403 (2017). DOI: 10.5796/electrochemistry.85.403
- M. Pharr, K. Zhao, X. Wang, Z. Suo, J.J. Vlassak. Nano Lett., 12 (9), 5039 (2012). DOI: 10.1021/nl302841y
- J. Park, S.S. Park, Y.S. Won. Electrochim. Acta, 107, 467 (2013). DOI: https: //doi.org/10.1016/j.electacta.2013.06.059
- K. Pan, F. Zou, M. Canova, Y. Zhu, J.-H. Kim. J. Power Sources, 413, 20 (2019). DOI: 10.1016/j.jpowsour.2018.12.010
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.