Dependence of the electrochemical parameters of composite SiO/C anodes for lithium-ion batteries on the composition and synthesis temperature
Lozhkina D.A. 1, Astrova E.V. 1, Rumyantsev A.M. 1
1Ioffe Institute, St. Petersburg, Russia
Email: darina.lozhka94@gmail.com, east@mail.ioffe.ru, rumyantsev.amr@gmail.com

PDF
The results of a study of anodes obtained by carbonization of silicon monoxide by means of a reaction with solid-phase fluorocarbon CF0.8 are presented. Charge/discharge voltage profiles were studied at different currents depending on the composition and temperature of the synthesis of composites. The irreversible losses of the 1st cycle and the contribution to them of intrinsic losses due to the formation of lithium oxide and its silicates and losses associated with the formation of SEI are analyzed. A difference has been established in the behavior of anodes made of SiO carbonized by annealing with CF0.8 at T=800oC (SiO/C composite) and silicon monoxide annealed with CF0.8 at T>1000oC at which disproportionation occurs simultaneously with the carbonization of SiO (d-SiO/C composite). The difference consisting in a higher discharge capacity, a higher Coulomb efficiency, and better rate capability of d-SiO/C is explained by a change in the composition of the SiOx matrix that occurs during the disproportionation process. The effect of the formation of d-SiO/C anodes by preliminary lithiation with a low current, after which the electrodes can be charged and discharged with much higher currents, has been discovered. The effect is explained by the amorphization of silicon crystallites and the increasing diffusion coefficient of lithium. Keywords: composite anodes SiO/C, lithium-ion batteries, disproportionation silicon monoxide, carbonization with fluorocarbon.
  1. M.N. Obrovac, V.L. Chevrier. Chem. Rev., 114, 11444 (2014). DOI: 10.1021/cr500207g
  2. Zh. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai. Chem. Soc. Rev., 48, 285 (2019). DOI: 10.1039/c8cs00441b
  3. T. Chen, J. Wu, Q. Zhang, X. Su. J. Power Sources, 363, 126 (2017). DOI: 10.1016/j.jpowsour.2017.07.073
  4. M. Jiao, Y. Wang, C. Ye, C. Wang, W. Zhang, C. Liang. J. Alloy. Compd., 842, 155774 (2020). DOI: 10.1016/j.jallcom.2020.155774
  5. J.-H. Kim, C.-M. Park, H. Kim, Y.-J. Kim, H.-J. Sohn. J. Electroanalyt. Chem., 661, 245 (2011). DOI: 10.1016/j.jelechem.2011.08.010
  6. S.C. Jung, H.-J. Kim, J.-H. Kim, Y.-K. Han. J. Phys. Chem. C., 120 (2), 886 (2016). DOI: 10.1021/acs.jpcc.5b10589
  7. Y. Nagao, H. Sakaguchi, H. Honda, T. Fukunaga, T. Esaka. J. Electrochem. Soc., 151 (10), A1572 (2004). DOI: 10.1149/1.1787173
  8. M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata. J. Electrochem. Soc., 152 (10), A2089 (2005). DOI: 10.1149/1.2013210
  9. K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, S. Shimosaki. J. Power Sources, 329, 462 (2016). DOI: 10.1016/j.jpowsour.2016.08.110
  10. L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahna. Electrochem. Solid-State Lett., 4 (9), A137 (2001). DOI: 10.1149/1.1388178
  11. T. Kim, S. Park, S.M. Oh. J. Electrochem. Soc., 154, A1112 (2007). DOI: 10.1149/1.2790282
  12. Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi. J. Electrochem. Soc., 157 (1), A26 (2010). DOI: 10.1149/1.3247598
  13. J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen, J. Sun. ACS Appl. Mater. Interfaces, 8 (44), 30239 (2016). DOI: 10.1021/acsami.6b10260
  14. Q. Yuan, F. Zhao, Y. Zhao, Z. Liang, D. Yan. Electrochimica Acta, 115, 16 (2014). DOI: 10.1016/j.electacta.2013.10.106
  15. M. Yamada, A. Ueda, K. Matsumoto, T. Ohzuku. J. Electrochem. Soc., 158 (4), A417 (2011). DOI: 10.1149/1.3551539
  16. T. Xu, Q. Wang, J. Zhang, X. Xie, B. Xia. ACS Appl. Mater. Interfac., 11, 19959 (2019). DOI: 10.1021/acsami.9b03070
  17. L. Guo, H. He, Y. Ren, C. Wang, M. Li. Chem Eng. J., 335, 32 (2017). DOI: 10.1016/j.cej.2017.10.145
  18. L. Hu, W. Xia, R. Tang, R. Hu, L. Ouyang, T. Sun. H. Wang. Frontiers in Chem., 8, 388 (2020). DOI: 10.3389/fchem.2020.00388
  19. E.V. Astrova, V.P. Ulin, A.V. Parfeneva, V.B. Voronkov. Tech. Phys. Lett., 45, 664 (2019). DOI: 10.1134/S1063785019070022
  20. E.V. Astrova, V.P. Ulin, A.V. Parfeneva, A.M. Rumyantsev, V.B. Voronkov, A.V. Nashchekin, V.N. Nevedomskiy, Y.M. Koshtyal, M.V. Tomkovich. J. Alloy. Compd., 826, 154242 (2020). DOI: 10.1016/j.jallcom.2020.154242
  21. E.V. Astrova, V.P. Ulin, A.V. Parfeneva, A.V. Nashchekin, V.N. Nevedomskiy, M.V. Baydakova. Semiconductors, 54 (8), 900 (2020). DOI: 10.1134/S1063782620080059
  22. D.A. Lozhkina, E.V. Astrova, A.I. Likhachev, A.V. Parfeneva, A.M. Ryumyantsev, A.N. Smirnov, V.P. Ulin. Tech. Phys., 91 (9), 1381 (2021). DOI: 10.21883/JTF.2021.09.51218.83-21
  23. D.A. Lozhkina, E.V. Astrova, R.V. Sokolov, D.A. Kirilenko, A.A. Levin, A.V. Parfeneva, V.P. Ulin. Semiconductors, 55 (4), 373 (2021). DOI: 10.1134/S1063782621040096
  24. A.S. Fialkov. Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Aspekt Press, M., 1997), p. 377-404 (in Russian)
  25. M. Winter, P. Novak, A. Monnier. J. Electrochem. Soc., 145, 428 (1998). DOI: 10.1149/1.1838281
  26. T. Tan, P.-K. Lee, D.Y.W. Yu. J. Electrochem. Soc., 166|,(3), A5210 (2019). DOI: 10.1149/2.0321903jes
  27. J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto. Solid State Ionics, 152-153, 125 (2002). DOI: 10.1016/S0167-2738(02)00362-4
  28. Ch.-M. Park, W. Choi, Y. Hwa, J.-H. Kim, G. Jeong, H.-J. Sohn. J. Mater. Chem., 20, 4854 (2010). DOI: 10.1039/B923926J
  29. K. Kitada, O. Pecher, P.C.M.M. Magusin, M.F. Groh, R.S. Weatherup, C.P. Grey. J. Am. Chem. Soc., 141, 7014 (2019). DOI: 10.1021/jacs.9b01589
  30. Z.B. Stojnov, B.M. Grafov, B.S. Savova-Stojnova, V.V. Elkin. Elektrokhimicheskij impedans (Nauka, M., 1991), p. 336 (in Russian)
  31. A.V. Churikov, K.I. Pridatko, A.V. Ivanishchev, I.A. Ivanishcheva, I.M. Gamayunova, K.V. Zapsis, V.O. Sycheva. Elektrokhimiya, 44 (5), 594 (2008) (in Russian). DOI: 10.1134/S1023193508050078
  32. M. Xia, L. Yi-ran, X. Xiong, W. Hu, Y. Tang, N. Zhou, Z. Zhou, H. Zhang. J. Alloy. Compnd., 800, 116e124 (2019). DOI: 10.1016/j.jallcom.2019.05.365
  33. F. Ozanam, M. Rosso. Mat. Sci. Eng., 213, 2 (2016). DOI: 10.1016/j.mseb.2016.04.016
  34. H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu, S. Zhang. J. Mech. Phys. Sol., 70, 349 (2014). DOI: 10.1016/j.jmps.2014.06.004
  35. S. Yoshida, T. Okubo, Y. Masuo, Y. Oba, D. Shibata, M. Haruta, T. Doi, M. Inaba. Electrochemistry, 85 (7), 403 (2017). DOI: 10.5796/electrochemistry.85.403
  36. M. Pharr, K. Zhao, X. Wang, Z. Suo, J.J. Vlassak. Nano Lett., 12 (9), 5039 (2012). DOI: 10.1021/nl302841y
  37. J. Park, S.S. Park, Y.S. Won. Electrochim. Acta, 107, 467 (2013). DOI: https: //doi.org/10.1016/j.electacta.2013.06.059
  38. K. Pan, F. Zou, M. Canova, Y. Zhu, J.-H. Kim. J. Power Sources, 413, 20 (2019). DOI: 10.1016/j.jpowsour.2018.12.010

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru