Statistical analysis of Taylor bubble formation in a capillary pipe
Ronshin F. V. 1,2, Kochkin D. Y. 1,2, Dementyev Y.A.1,2, Eloyan K. S.1,2, Vozhakov I. S. 1,2
1Novosibirsk State University, Novosibirsk, Russia
2Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: f.ronshin@gmail.com, kochkin1995@mail.ru, demyurij@inbox.ru, karapet8883@gmail.com, vozhakov@gmail.com

PDF
An experimental study of the Taylor regime in a pipe with an inner diameter of 2 mm has been carried out. A method for studying the Taylor regime in a capillary pipe using automatic image analysis to measure the main characteristics of bubbles has been developed and applied for the first time. The dependences of the gas bubble and liquid slug lengths on the gas and liquid velocities are studied. It was found that in the region of the stable Taylor regime, the standard deviation of the bubble sizes is close to the accuracy of the research method. The dispersion of the bubble size distribution increases near the regime boundary. It is shown that, based on the statistical analysis of a large amount of data, it can be concluded that there is a coalescence and fragmentation of bubbles. Keywords: capillary pipe, two-phase flow, Taylor regime, statistical analysis.
  1. M.N. Kashid, L. Kiwi-Minsker, Ind. Eng. Chem. Res., 48, 6465 (2009). DOI: 10.1021/ie8017912
  2. J. Hou, G. Qian, X. Zhou, Chem. Eng. J., 167, 475 (2011). DOI: 10.1016/j.cej.2010.10.054
  3. N. Oozeki, S. Ookawara, K. Ogawa, P. Lob, V. Hessel, AlChE J., 55, 24 (2009). DOI: 10.1002/aic.11650
  4. P. Lang, M. Hill, I. Krossing, P. Woias, Chem. Eng. J., 179, 330 (2012). DOI: 10.1016/j.cej.2011.11.015
  5. E. Livak-Dahl, I. Sinn, M. Burns, Ann. Rev. Chem. Biomol. Eng., 2, 325 (2011). DOI: 10.1146/annurev-chembioeng-061010-114215
  6. A.V. Minakov, A.A. Shebeleva, A.A. Yagodnitsyna, A.V. Kovalev, A.V. Bilsky, Tech. Phys. Lett., 43 (9), 857 (2017). DOI: 10.1134/S1063785017090231
  7. A. Gunther, S.A. Khan, M. Thalmann, F. Trachsel, K.F. Jensen, Lab Chip, Iss. 4, 278 (2004). DOI: 10.1039/B403982C
  8. T. Yasukawa, W. Ninomiya, K. Ooyachi, N. Aoki, K. Mae, Chem. Eng. J., 167, 527 (2011). DOI: 10.1016/j.cej.2010.08.077
  9. F. Ronshin, Y. Dementyev, D. Kochkin, K. Eloyan, I. Vozhakov, Exp. Therm. Fluid Sci., 132, 110565 (2022). DOI: 10.1016/j.expthermflusci.2021.110565
  10. V. Serdyukov, I. Malakhov, A. Surtaev, J. Visualization, 23, 873 (2020). DOI: 10.1007/s12650-020-00660-z
  11. N. Shao, W. Salman, A. Gavriilidis, P. Angeli, Int. J. Heat Fluid Flow., 29, 1603 (2008). DOI: 10.1016/j.ijheatfluidflow.2008.06.010
  12. D.J. Nicklin, Chem. Eng. Sci., 17, 693 (1962). DOI: 10.1016/0009-2509(62)85027-1
  13. K. Mishima, T. Hibiki, H. Nishihara, Int. J. Multiphase Flow, 19, 115 (1993). DOI: 10.1016/0301-9322(93)90027-R

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru