Distribution of mechanical properties in annual growth rings of deciduous trees measured using scanning naation
Golovin Yu. I. 1,2, Tyurin A. I. 1, Gusev A. A. 1,3, Matveev S. M. 1,3, Golovin D. Yu. 1, Vasyukova I. A. 1
1Research Institute for Nanotechnologies and Nanomaterials, Derzhavin Tambov State University, Tambov, Russia
2Lomonosov Moscow State University, Moscow, Russia
3Voronezh State University of Forestry and Technologies named after G.F. Morozov, Voronezh, Russia
Email: yugolovin@yandex.ru, tyurin@tsu.tmb.ru, nanosecurity@mail.ru, lisovod@bk.ru, tarlin@yandex.ru, vasyukovaia@gmail.com

PDF
The paper presents the results of mechanical properties scanning by means of naation across the annual growth rings of deciduous trees wood, small-leaved lime (Tilia cordata) and common oak (Quercus robur) in particular. Significant variations in microhardness H and Young's modulus E radial dependencies have been found for any of the studied species. Results can be useful 1) to amend the understanding the nature of macromechanical properties of various wood species and to reveal the details of their formation depending upon microstructural characteristics, 2) to optimize the technologies of growing, reinforcement and subsequent usage of the wood, 3) to develop new independent methods in dendrochronology and dendroclimatology Keywords: nanocomposites, naation, nano-/microhardness and Young's modulus scanning, tree annual growth rings, dendrochronology
  1. L.A. Donaldson, IAWA J., 40 (4), 645 (2019). DOI: 10.1163/22941932-40190258
  2. E. Toumpanaki, D.U. Shah, S.J. Eichhorn, Adv. Mater., 33 (28), 2001613 (2021). DOI: 10.1002/adma.202001613
  3. Nanomechanical analysis of high performance materials, ed. by A. Tiwari (Springer Science+Business Media, Dordrecht-Heidelberg-N.Y.-London, 2014)
  4. Yu.I. Golovin, Phys. Solid State, 63 (1), 1 (2021). DOI: 10.1134/S1063783421010108
  5. Yu. I. Golovin, Phys. Solid State, 50 (12), 2205 (2008). DOI: 10.1134/S1063783408120019
  6. Yu.I. Golovin, Nairovanie i ego vozmozhnosti (Mashinostroenie, M., 2009) (in Russian)
  7. A.C. Fischer-Cripps, Naation (Springer, N.Y., 2011). DOI: 10.1007/978-1-4419-9872-9
  8. N.V. Perepelkin, F.M. Borodich, A.E. Kovalev, S.N. Gorb, Nanomaterials, 10 (1), 15 (2020). DOI: 10.3390/nano10010015
  9. N. Mittal, F. Ansari, V. Krishne Gowda, C. Brouzet, P. Chen, P.T. Larsson, S.V. Roth, F. Lundell, L. W agberg, N.A. Kotov, L.D. Soderberg, ACS Nano, 12 (7), 6378 (2018). DOI: 10.1021/acsnano.8b01084
  10. Handbook of nanocellulose and cellulose nanocomposites, ed. by H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne (Wiley-VCH Verlag, Weinheim, 2017). DOI: 10.1002/9783527689972
  11. S. Cai, S. Hu, Y. Li, X. Wang, Wood Research, 64 (4), 565 (2019). http://www.woodresearch.sk/wr/201904/01.pdf
  12. A.C. Normand, A.M. Charrier, O. Arnould, A.L. Lereu, Sci. Rep., 11, 5739 (2021). DOI: 10.1038/s41598-021-84994-0
  13. Handbook of mechanics of materials, ed. by C.-H. Hsueh, S. Schmauder, C.-S. Chen, K.K. Chawla (Springer Nature, Singapore, 2019). https://www.springer.com/gp/book/9789811068836
  14. J.K. Pearl, J.R. Keck, W. Tintor, L. Siekacz, H.M. Herrick, M.D. Meko, C.L. Pearson, Holocene, 30 (6), 923 (2020). DOI: 10.1177/0959683620902230
  15. W.C. Oliver, G.M. Pharr, J. Mater. Res., 19 (1), 3 (2004). DOI: 10.1557/jmr.2004.19.1.3
  16. P. Mania, M. Nowicki, Bull. Pol. Acad. Sci.: Tech. Sci., 68 (5) 1237 (2020). DOI: 10.24425bpasts.2020.134645

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru