Kinetics of spontaneous formation of core shell structure in (In,Ga)As nanowires
Sibirev N V
1, Berdnikov Y
1,2,3, Shtrom I. V.
1,4, Ubyivovk E. V.
1,2, Reznik R. R.
1,2,5, Cirlin G. E.
1,2,41St. Petersburg State University, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
3HSE University, St. Petersburg, Russia
4Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
5ITMO University, St. Petersburg, Russia
Email: NickSibirev@yandex.ru, yury.berdnikov@itmo.ru, igorstrohm@mail.ru, ubyivovk@gmail.com, moment92@mail.ru, N.Sibirev@spbu.ru
A model of spontaneous formation of the core-shell structure in (In,Ga)As nanowire grown via molecular beam epitaxy without independent radial growth is proposed. Within the framework of the proposed model, the distribution of In across the axis of the nanowire was fitted. Keywords: core-shell nanowire, ternary nanowire, InGaAs nanowire, radial nanowire heterostructure.
- V.G. Dubrovskii, G.E. Cirlin, V.M. Ustinov, Semiconductors, 43 (12), 1539 (2009). DOI: 10.1134/S106378260912001X
- E. Barrigon, M. Heurlin, Z. Bi, B. Monemar, L. Samuelson, Chem. Rev., 119, 9170 (2019). DOI: 10.1021/acs.chemrev.9b00075
- M. Royo, M. De Luca, R. Rurali, I. Zardo, J. Phys. D: Appl. Phys., 50, 143001 (2017). DOI: 10.1088/1361-6463/aa5d8e
- V.G. Dubrovskii, I.V. Shtrom, R.R. Reznik, Y.B. Samsonenko, A.I. Khrebtov, I.P. Soshnikov, S. Rouvimov, N. Akopian, T. Kasama, G.E. Cirlin, Cryst. Growth Des., 16, 7251 (2016). DOI: 10.1021/acs.cgd.6b01412
- E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, L. Geelhaar, Nano Res., 5, 796 (2012). DOI: 10.1007/s12274-012-0263-9
- V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, Tech. Phys. Lett., 30 (8), 682 (2004). DOI: 10.1134/1.1792313
- P. Periwal, N.V. Sibirev, G. Patriarche, B. Salem, F. Bassani, V.G. Dubrovskii, T. Baron, Nano Lett., 14, 5140 (2014). DOI: 10.1021/nl5019707
- J. Johansson, M. Ghasemi, Phys. Rev. Mater., 1, 040401 (2017). DOI: 10.1103/PhysRevMaterials.1.040401
- C.B. Maliakkal, E.K. Martensson, M.U. Tornberg, D. Jacobsson, A.R. Persson, J. Johansson, L.R. Wallenberg, K.A. Dick, ACS Nano., 14, 3868 (2020). DOI: 10.1021/acsnano.9b09816
- J.C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, Y. Ollivier, Phys. Rev. Lett. 121, 166101 (2018). DOI: 10.1103/PhysRevLett.121.166101
- N.V. Sibirev, Tech. Phys. Lett., 41 (3), 209 (2015). DOI: 10.1134/S1063785015030153
- V.G. Dubrovskii, Tech. Phys. Lett., 42 (3), 332 (2016). DOI: 10.1134/S1063785016030196
- P. Krogstrup, H.I. J rgensen, E. Johnson, M.H. Madsen, C.B. S rensen, A.F.I. Morral, M. Aagesen, J. Nygard, F. Glas, J. Phys. D: Appl. Phys., 46 (31), 313001 (2013). DOI: 10.1088/0022-3727/46/31/313001
- A. Scaccabarozzi, A. Cattoni, G. Patriarche, L. Travers, S. Collin, J.C. Harmand, F. Glas, F. Oehler, Nanoscale, 12, 18240 (2020). DOI: 10.1039/d0nr04139d
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.