Mode transformation in hybrid waveguides based on lithium niobate for efficient coupling to a standard single mode fiber
Parfenov M. V.
1,2, Agruzov P. M.
1, Ilichev I. V.
1, Usikova A. A.
1, Shamrai A. V.
11Ioffe Institute, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: mvparfenov@mail.ioffe.ru
Topology of a hybrid waveguide device, which performs an effective transformation of a standard gradient titanium in-diffused waveguide mode to a hybrid waveguide mode, is considered. With its help a rather large optical mode with size optimal for coupling with standard single-mode fibers can be converted to a mode with a smaller size. Two the most perspective materials for hybrid waveguide fabrication were considered: silicon and titanium dioxide. The theoretical analysis has shown that transformation efficiency of more than 99% is achievable for waveguide devices based on titanium dioxide with contact lithography resolution. Keywords: integrated optics, waveguide, lithium niobate, optical mode, taper, silicon, titanium dioxide
- V.M. Petrov, P.M. Agruzov, V.V. Lebedev, I.V. Il'ichev, A.V. Shamray, Phys.-Usp., 64, 722 (2021). DOI: 10.3367/UFNr.2020.11.038871
- Y. Jia, L. Wang, F. Chen. Appl. Phys. Rev., 8, 011307 (2021). DOI: 10.1063/5.0037771
- M. Zhang, C. Wang, P. Kharel, D. Zhu, M. Lonv car. Optica, 8 (5), 652 (2021). DOI: 10.1364/OPTICA.415762
- I. Krasnokutska, R.J. Chapman, J.J. Tambasco, A. Peruzzo. Opt. Express, 27 (13), 17681 (2019). DOI: 10.1364/OE.27.017681
- C. Hu, A. Pan, T. Li, X. Wang, Y. Liu, S. Tao, C. Zeng, J. Xia. Opt. Express., 29 (4), 5397 (2021). DOI: 10.1364/OE.416492
- L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, L. Marko. Opt. Lett., 44 (9), 2314 (2019). DOI: 10.1364/OL.44.002314
- P. Ying, H. Tan, J. Zhang, M. He, M. Xu, X. Liu, R. Ge, Y. Zhu, C. Liu, X. Cai. Opt. Lett., 46 (6), 1478 (2021). DOI: 10.1364/OL.418996
- V. Ramaswamy, R.C. Alferness, M. Divino. Electron. Lett. 18 (1), 30 (1982). DOI: 10.1049/el:19820022
- M.V. Parfenov, A.V. Shamrai, Tech. Phys. Lett., 46 (8), 819 (2020). DOI: 10.1134/S1063785020080258
- M. Bazzan, C. Sada. Appl. Phys. Rev., 2 (4), 040603 (2015). DOI: 10.1063/1.4931601
- X. Guan, H. Hu, L.K. Oxenl we, L.H. Frandsen. Opt. Express, 26 (2), 1055 (2018). DOI: 10.1364/OE.26.001055
- H.H. Li. J. Phys. Chem. Ref. Data, 9, 561 (1980). DOI: 10.1063/1.555624
- M. Parfenov, P. Agruzov, I. Ilichev, A. Shamray. J. Phys.: Conf. Ser., 741 (1), 012141 (2016). DOI: 10.1088/1742-6596/741/1/012141
- J. Van Roey, J. van der Donk, P.E. Lagasse. J. Opt. Soc. Am., 71 (7), 803 (1981). DOI: 10.1364/JOSA.71.000803
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.