Numerical modeling of carbides behavior under high-energy loading
K. K. Maevskii 1,2
1Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
Email: konstantinm@hydro.nsc.ru

PDF
The results of research on modeling thermodynamic parameters of shock-wave loading of carbides with different stoichiometric ratios are presented. The carbides are considered as a mixture of carbon with the corresponding component. The calculations of pressure, compression and temperature values under shock-wave loading for solid and porous carbides in the range of pressure values above 3 GPa are performed. The model calculations are compared with the known experimental results on the shock-wave loading of carbides with different porosity values. The possibility of modeling the behavior according to the proposed method for carbides for which there are no experimental data at high dynamic loads is shown. Keywords: Equation of state, shock adiabat, thermodynamic equality, porous heterogeneous medium, carbides
  1. F.A. Akopov, M.A. Adrianov, R.Kh. Amirov, T.I. Borodina, L.B. Borovkova, G.E. Val'yano, A.Yu. Dolgoborodov, V.V. Tkachenko, M.B. Shavelkina. Refract. Ind. Ceram., 57 (5), 496 (2017). DOI: 10.1007/s11148-017-0011-5
  2. A.A. Bakanova, V.A. Bugaeva, I.P. Dudoladov, R.F. Trunin, Izv. Akad. Nauk SSSR. Ser. Fiz. Zemli, 6, 58 (1995) (in Russian)
  3. M.N. Pavlovskii, Fiz. Tverd. Tela, 12 (7), 2175 (1970) (in Russian)
  4. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, W.J. Carter. The Equation of State of Solids from Shock Wave Studies / In: High Velocity Impact Phenomena, ed. by R. Kinslow (Academic Press, NY., 1970)
  5. W.H. Gust, E.B. Royce. J. Appl. Phys., 42, 276 (1971). DOI: 10.1063/1.1686902
  6. D. Grady. J. Phys. IV Proceedings, EDP Sci., 04 (C8), C8-385-C8-391 (1994). DOI: 10.1051/jp4:1994859
  7. T.J. Vogler, W.D. Reinhart, L.C. Chhabildas. J. Appl. Phys., 95, 4173 (2004). DOI: 10.1063/1.1686902
  8. Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino, M. Kodama, K. Shibata, K. Fukuoka, M. Kikuchi, T. Kobayashi, T. Sekine. J. Appl. Phys., 100, 113536 (2006). DOI: 10.1063/1.2399334
  9. D.E. Grady. J. Appl. Phys., 117, 165904 (2015). DOI: 10.1063/1.4918604
  10. P. Dera, M.H. Manghnani, A. Hushur, Yi. Hu, S. Tkachev. J. Solid State Chem., 215, 85 (2014). DOI: 10.1016/j.jssc.2014.03.018
  11. S.A. Dyachkov, A.N. Parshikov, M.S. Egorova, S.Yu. Grigoryev, V.V. Zhakhovsky, S.A. Medin. J. Appl. Phys., 124, 085902 (2018). DOI: 10.1063/1.5043418
  12. D.E. Fratanduono, P.M. Celliers, D.G. Braun, P.A. Sterne, S. Hamel, A. Shamp, E. Zurek, K.J. Wu, A.E. Lazicki, M. Millot, G.W. Collins. Phys. Rev. B, 94, 184107 (2016). DOI: 10.1103/PhysRevB.94.184107
  13. A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. J. Exp. Theor. Phys., 80, 467 (1995). DOI: 10.1134/S1063776117030049
  14. K.K. Maevskii. AIP Conf. Proc., 2167, 020204 (2019). DOI: 10.1063/1.5132071
  15. A.S. Savinykh, I.A. Cherepanov, S.V. Razorenov, A.I. Ovsienko, V.I. Rumyantsev, S.S. Ordan'yan. Tech. Phys., 63, 1755 (2018). DOI: 10.1134/S1063784218120186
  16. R.Kh. Bagramova, N.R. Serebryanaya, V.M. Prokhorov, V.D. Blank. Tech. Phys., 63 (7), 1010 (2018). DOI: 10.1134/S1063784218070046
  17. A.S. Savinykh, G.V. Garkushin, S.V. Razorenov, V.I. Rumyantsev. Tech. Phys., 60, 863 (2015). DOI: 10.1134/S1063784215060249
  18. A.I. Savvatimskii, S.V. Onufriev. High Temp., 58, 800 (2020). DOI: /10.1134/S0018151X20060188
  19. B.D. Sahoo, K.D. Joshi, T.C. Kaushik. Comput. Condens. Matter., 21, e00431 (2019). DOI: 10.1016/j.cocom.2019.e00431
  20. J.S. Olsen, L. Gerward, U. Benedict, J.-P. Itie, K. Richter. J. Less Common Metal., 121, 445 (1986). DOI: 10.1016/0022-5088(86)90561-8
  21. B.D. Sahoo, K.D. Joshi, Satish C. Gupta, J. Nucl. Mater., 437, 81 (2013). DOI: 10.1016/j.jnucmat.2013.01.314
  22. B.D. Sahoo, D. Mukherjee, K.D. Joshi, T.C. Kaushik. J. Appl. Phys., 120, 085902 (2016). DOI: 10.1063/1.4961497
  23. J.-P. Dancausse, S. Heathman, U. Benedict, L. Gerward, J. Staun Olsen, F. Hulliger J. Alloy. Compd., 191, 309 (1993). DOI: 10.1016/0925-8388(93)90084-Z
  24. V.N. Senchenko, R.S. Belikov. J. Phys.: Conf. Ser., 1147, 012011. (2019). DOI: 10.1088/1742-6596/1147/1/012011
  25. A.S. Savinykh, I.A. Cherepanov, S.V. Razorenov, K. Mandel, L. Kruger. Tech. Phys., 64, 356 (2019). DOI: 10.1134/S1063784219030216
  26. R.F. Trunin, Issledovaniya ekstremal'nykh sostoyanii kondensirovannykh veshchestv metodom udarnykh voln. Uravneniya Gyugonio (RFYaTs-VNIIEF, Sarov, 2006), p. 137 (in Russian).
  27. A.Ya. Pak, T.Yu. Yakich, G.Ya. Mamontov, M.A. Rudmin, Yu.Z. Vasil'eva. Tech. Phys., 65, 771 (2020). DOI: 10.1134/S1063784220050205
  28. S.A. Rasakia, B. Zhanga, K. Anbalgamb, T. Thomas, M. Yang. Prog. Solid State Chem., 50, 1 (2018) DOI: 10.1016/j.progsolidstchem.2018.05.001
  29. D. Cho, J.H. Park, Y. Jeong, Y.L. Loo. Ceram. Int., 41, 10974 (2015) DOI: 10.1016/j.ceramint.2015.05.041
  30. Q. Dong, M. Huang, C. Guo, G. Yu, M. Wu. Int. J. Hydrogen Energy, 42, 3206 (2017) DOI: 10.1016/j.ijhydene.2016.09.217
  31. A.N. Ishchenko, S.A. Afanas'eva, N.N. Belov, V.V. Burkin, S.V. Galsanov, V.Z. Kasimov, V.A. Kudryavtsev, Ya.D. Lipatnikova, L.S. Martsunova, K.S. Rogaev, A.Yu. Sammel', A.B. Skosyrskii, N.T. Yugov. Tech. Phys., 65, 414 (2020). DOI: 10.1134/S106378422003010X
  32. A.S. Savinykh, K. Mandel, S.V. Razorenov, L. Kruger. Tech. Phys., 63, 357 (2018). DOI: 10.1134/S1063784218030210
  33. K.K. Maevskii. J. Phys. Conf. Series., 894, 012057 (2017). DOI: 10.1088/1742-6596/894/1/012057
  34. K.K. Maevskii, S.A. Kinelovskii. High Temperature, 56 (6) 853 (2018). DOI: 10.1134/S0018151X18060172
  35. K.K. Maevskii, S A Kinelovskii. J. Phys. Conf. Series., 946, 012113 (2018). DOI: 10.1088/1742-6596/946/1/012113
  36. K.K. Maevskii. Math. Montis., 41, 123 (2018)
  37. K.K. Maevskii. Tech. Phys., 66, 791 (2021). DOI: 10.1134/S1063784221050145
  38. Ya.B. Zel'dovich, Yu.P. Raizer, Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Fizmatlit, M., 2008), p. 519 (in Russian)
  39. P.R. Levashov, K.V. Khishchenko, I.V. Lomonosov, V.E. Fortov. AIP Conf. Proc., 706, 87 (2004). http://www.ihed.ras.ru/rusbank/
  40. M.N. Pavlovskii, Fiz. Tverd. Tela, 13 (3), 893 (1970) (in Russian)
  41. S.P. Marsh (editor). LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980)
  42. R.F. Trunin, L.F. Gudarenko, M.V. Zhernokletov, G.V. Simakov, Eksperimental'nye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veshchestv (RFYaTs-VNIIEF, Sarov, 2006) (in Russian)
  43. A.M. Molodets, A.A. Golyshev, G.V. Shilov. JETP Lett., 111 (12), 720 (2020). DOI: 10.1134/S0021364020120103
  44. M. DeVries, G. Subhash, A. Awasthi. Phys. Rev. B, 101, 144107 (2020). DOI: 10.110
  45. I.V. Lomonosov, V.E. Fortov, A.A. Frolova, K.V. Khishchenko, A. A. Charakhchyan, L.V. Shurshalov. Tech. Phys., 48, 727 (2003). DOI: 10.1134/1.1583826
  46. A.V. Ostrik, Konstr. Kompoz. Mater., 2, 48 (2018) (in Russian)
  47. K.K. Maevskii, S.A. Kinelovskii. AIP Conf. Proc., 1783, 020143 (2016). DOI: 10.1063/1.4966436
  48. K.K. Maevskii. Math. Montis., 50, 140 (2021). DOI: 10.20948/mathmontis-2021-50-12

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru