Formation of the composition and characteristics of the surface of chromonicel steel 12CR18NI10T during laser modification in a layer of experimental alloying coating
The results of an experimental study of laser pulsed modification of the surface of stainless steel 12CR18NI10T in a layer of alloying compound made of graphite paste and nanodispersed titanium dioxide powder (anatase) and without coating are presented. A comparative analysis of the effect of the coating on the elemental and phase compositions, morphological characteristics and microhardness of the modified surface is carried out. It was found that as a result of the treatment, the processes of cementation and oxidation of the surface occur, which made it possible to obtain a mixture of iron carbide and high-strength oxides in the surface layer of steel. In the samples that underwent laser treatment in the coating layer, an increase in the intensity of the diffraction peaks of the graphite phase and the formation of iron oxides Fe3O4 and chromium Cr2O3 with the presence of titanium dioxide TiO2 were revealed, which created a mixed heterophase metal oxide structure with increased mechanical strength. An increase in the microhardness of the modified surface after laser pulsed scanning in the layer of the experimental alloying compound is established. Keywords: Stainless steel, laser modification, alloying coating, elemental and phase compositions, surface structure, microhardness.
- M. Moradi, D. Ghorbani, M.K. Moghadam, M. Kazazi, F. Rouzbahani, Sh. Karazi. J. Alloys Compounds, 795, 213 (2019). DOI: http://dx.doi.org/10.1016/j.jallcom.2019.05.016
- M. Moradi, H. Arabi, S.J. Nasab, K.Y. Benyounisc. Optics Laser Technol., 111, 347 (2019). DOI: 10.1016/j.optlastec.2018.10.013
- J. Sundqvist, T. Manninen, H.-P. Heikkinen. Surface Coatings Technol., 344, 673 (2018). DOI: 10.1016/j.surfcoat.2018.04.002
- N. Maharjan, W. Zhou, N. Wu. Surface Coatings Technol., 385, 125399 (2020). DOI: 10.1016/j.surfcoat.2020.125399
- B. Zhang, H. Wang, R. Chen, B. He, Y. Cao, D. Liu. Surface Engineer., 37 (5), 1 (2020). DOI: 10.1080/02670844.2020.1840758
- M. Kulka, D. Miko ajczak, N. Makuch, P. Dziarski, D. Przestacki, D. Panfil-Pryka, A. Piasecki, A. Miklaszewski. Materials, 13 (21), 4852 (2020). DOI: 10.3390/ma13214852
- J. Boes, A. Rottger, W. Theisen. Additive Manufacturing, 32, 101081 (2020). DOI: 10.1016/j.addma.2020.101081
- V.S. Golubev, A.I. Mikhlyuk, I.A. Romanchuk, L.I. Protskevich, in Proc. XIII Int. Conf. "Modern Methods and Technologies to Create and Process Materials", Minsk, 2018, p. 58 (in Russian)
- T. Yamaguchi, H. Hagino. Vacuum, 155, 23 (2018). DOI: 10.1016/j.vacuum.2018.05.050
- F. Laroudie, C. Tassin, M. Pons. J. Mater. Sci., 30, 3652 (1995). DOI: 10.1051/jp4:1994415
- B. AlMangour, D. Grzesiak, J. Yang. J. Alloy. Comp., 706, 409 (2017). DOI: 10.1016/j.jallcom.2017.01.149
- I.Y. Khalfallah, M.N. Rahoma, J.H. Abboud, K.Y. Benyounis. Optics Laser Technol., 43 (4), 806 (2011). DOI: 10.1016/j.optlastec.2010.11.006
- D.I. Adebiyi, T. Fedotova, S.L. Pityana, A.P.I. Popoola. Intern. J. Phys. Sci., 6 (14), 3336 (2011)
- V.P. Biryukov, Fotonika, 27 (3), 34 (2011) (in Russian)
- F. Colville. Photovoltaics Intern., 5 (6), 1 (2009)
- A.A. Fomin, M.A. Fomina, V. Koshuro, I.V. Rodionov. Composite Structures, 229, 111451 (2019). DOI: 10.1016/j.compstruct.2019.111451
- M.A. Vasilyev, I.N. Makeeva, P.A. Gurin, Usp. Fiz. Met., 20 (2), 310 (2019) (in Russian). DOI: 10.15407/ufm.20.02.310
- A. Chirkov, Fotonika, 4, 28 (2008) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.