The dependence of the sublimation temperature of the soot particles formed in the flames on their size and structure
Gurentsov E.V.1, Drakon A.V.1, Eremin A.V.1, Kolotushkin R.N.1, Mikheyeva E.Yu.1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: gurentsov@ihed.ras.ru
In this paper, the dependence of the sublimation temperature of soot particles synthesized during the combustion of various hydrocarbons, depending on their size and structure, is obtained. The experimental approach is based on the analysis of the thermal radiation of particles heated to the sublimation temperature by a nanosecond laser pulse. The sublimation temperature of soot particles was measured using the two-color pyrometry method. In this paper, it is proposed to use the average size of primary particles to compare data in different flames. It is established, that the sublimation temperature of soot particles depends mainly on the stage of their formation, which is characterized by an increase in average size. It is shown, that with an increase in the average particle size from 12 to 23 nm, their sublimation temperature increases significantly from 2700 to 4500 K. This reflects a significant difference in the thermodynamic and optical properties of the so-called "young" and "mature" soot particles, which must be taken into account when developing methods of soot diagnostics and in the thermo-physical analysis of combustion and pyrolysis processes with the formation of soot. Keywords: flames, soot particles, sublimation temperature, structure of soot particles, transmission electron microscopy, laser-induced incandescence.
- T. Ishiguro, Y. Takatori, R. Akihama. Combust. Flame, 108, 231 (1997). DOI: 10.16/S0010-2180(96)00206-4
- V. Fernandez-Alos, J.K. Watson, R. Vander Wal, J.P. Mathews. Combust. Flame, 158, 1807 (2011). DOI: 10.1016/j.combustflame.2011.01.003
- B.S. Haynes, H.Gg. Wagner. Prog. Energy Combust. Sci., 7, 229 (1981). DOI: 10.1016/0360-1285(81)90001-0
- H. Wang. Proc. Combust. Inst., 33, 41 (2011). DOI: 10.1016/j.proci.2010.09.009
- P. Desgroux, X. Mercier, K.A. Thomson. Proc. Combust. Inst., 34, 1713 (2013). DOI: 10.1016/j.proci.2012.09.004
- M. Frenklach. Phys. Chem. Chem. Phys., 4, 2028 (2002). DOI: 10.1039/B110045A
- L.A. Sgro, A.C. Barone, M. Commodo, A. D'Alessio, A. De Filippo, G. Lanzuolo, P. Minutolo. Proc. Combust. Inst., 32, 689 (2009). DOI: 10.1016/j.proci.2008.06.216
- M.L. Botero, Y. Sheng, J. Akroyd, J. Martin, J.A.H. Dreyer, W. Yang, M. Kraft. Carbon, 141, 635 (2019). DOI: 10.1016/j.carbon.2018.09.063
- H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson. Proc. Combust. Inst., 33, 641 (2011). DOI: 10.1016/j.proci.2010.06.166
- S. Bejaoui, S. Batut, F. Therssen, N. Lamoureux, P. Desgroux, F. Liu. Appl. Phys. B, 118, 449 (2015). DOI: 10.1007/s00340-015-6014-3
- A.V. Eremin, E.V. Gurentsov, R.N. Kolotushkin. Appl. Phys. B, 126, 125 (2020). DOI: 10.1007/s00340-020-07426-3
- A.V. Drakon, A.V. Eremin, E.V. Gurentsov, E.Yu. Mikheyeva, R.N. Kolotushkin. Appl. Phys. B, 127, 81 (2021). DOI: 10.1007/s00340-021-07623-8
- E.V. Gurentsov, A.V. Eremin, E.Yu. Mikheyeva. High Temperature, 55 (5), 723 (2017). DOI: 10.1134/S0018151X17040071
- K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, S. Stappert. Phys. Rev. Lett., 91, 106102 (2003). DOI: 10.1103/PhysRevLett.91.106102
- S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak. Appl. Phys. B, 83, 397 (2006). DOI: 10.1007/s00340-006-2210-5
- D.R. Snelling, F. Liu, G.J. Smallwood, O.L. Gulder. Combust. Flame, 136, 180 (2004). DOI:10.1016/j.combustflame.2003.09.013
- A. Eremin, E. Gurentsov, E. Mikheyeva, K. Priemchenko. Appl. Phys. B, 112, 421 (2013). DOI: 10.1007/s00340-013-5530-2
- E.V. Gurentsov, A.V. Eremin, S.A. Musikhin. Tech. Phys. 64, 1133 (2019). DOI: 10.1134/S1063784219080085
- E. Gurentsov. Nanotechnol. Rev., 7 (6) 583 (2018). DOI: 10.1515/ntrev-2018-0080
- C. Jager, Th. Henning, R. Schlogl, O. Spillecke. J. Non-Crystall. Sol., 258, 161 (1999). DOI: 10.1016/S0022-3093(99)00436-6
- V. Fernandez-Alos, J.K. Watson, R. Vander Wal, J.P. Mathews. Combust. Flame, 158, 1807 (2011). DOI: 10.1016/j.combustflame.2011.01.003
- C.S. McEnally, U.O. Koylu, L.D. Pfefferle, D.E. Rosner. Combust. Flame, 109, 701 (1997). DOI: 10.1016/S0010-2180(97)00054-0
- B. Kock, C. Kayan, J. Knipping, H.R. Ortner, P. Roth. Proc. Combust. Inst., 30, 1689 (2004). DOI: 10.1016/j.proci.2004.07.034
- H.A. Michelsen. J. Chem. Phys., 118, 7012 (2003). DOI: 10.1063/1.1559483
- X. Lopez-Yglesias, P.E. Schrader, H.A. Michelsen. J. Aerosol Sci., 75, 43 (2014). DOI: 10.1016/j.jaerosci.2014.04.011
- M. Alfe, B. Apicella, R. Barbella, J.N Rouzaud, A. Tregrossi, A. Ciajolo. Proc. Combust. Inst., 32, 697 (2009). DOI: 10.1016/j.proci.2008.06.193
- H.A. Michelsen. Proc. Combust. Inst., 38, 1197 (2021) DOI: 10.1016/j.proci.2020.06.383
- B. Apicella, P. Pre, J.N. Rouzaud, J. Abrahamson, R.L. Vander Wal, A. Ciajolo, A. Tregrossi, C. Russo. Combust. Flame, 204, 13 (2019). DOI: 10.1016/j.combustflame.2019.02.026
- H.-S. Shim, R.H. Hurt, N.Y.C. Yang. Carbon, 38, 29 (2000). DOI: 10.1016/S0008-6223(99)00096-2
- A. Galvez, N. Herlin-Boime, C. Reynaud, C. Clinard, J-N. Rouzaund. Carbon, 40, 2775 (2002). DOI: 10.1016/S0008-6223(02)00195-1
- F. Goulay, P.E. Schrader, X. Lopez-Yglesias, H.A. Michelsen. Appl. Phys. B, 112, 287 (2013). DOI: 10.1007/s00340-013-5504-4
- M. Alfe, B. Apicella, J.-N. Rouzaund, A. Tregrossi, A. Ciajolo. Combust. Flame, 157, 1959 (2010). DOI: 10.1016/j.combustflame.2010.02.007
- J. Abrahamson. Carbon, 12, 111 (1974). DOI: 10.1016/0008-6223(74)90019-0
- H.R. Leider, O.H. Krikorian, D.A. Young. Carbon, 11, 555 (1973). DOI: 10.1016/0008-6223(73)90316-3
- H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounai m-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz. Appl. Phys. B, 87, 503 (2007). DOI: 10.1007/s00340-007-2619-5
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.