Analysis of toroidal Alfven eigenmode-induced fast ion losses in Globus-M2 spherical tokamak
Balachenkov I. M.
1, Bakharev N.N.
1, Varfolomeev V. I.
1, Gusev V.K.
1, Iliasova M. V.
1, Kurskiev G. S.
1, Minaev V. B.
1, Patrov M. I.
1, Petrov Yu. V.
1, Sakharov N. V.
1, Skrekel O. M.
1, Telnova A. Yu.
1, Khilkevitch E. M.
1, Shevelev A. E.
1, Shchegolev P. B.
11Ioffe Institute, St. Petersburg, Russia
Email: balachenkov@mail.ioffe.ru
With an increase of magnetic field up to 0.8 T and plasma current to 400 kA, fast ion losses rate in the discharges with toroidal Alfven eigenmodes decreased in tokamak Globus-M2 comparing with Globus-M tokamak discharges. Taking into account the data on the discharges with increased magnetic field and plasma current, the regression fit of neutral particle analyzer flux drop in energy channel close to neutral beam energy on relative eigenmode magnitude, the value of magnetic field and plasma current was analyzed. The power of flux drop dependence on TAE magnitude was found to be ~0.5 and inverse proportional on the value of product of magnetic field and plasma current, which is highly likely is determined only by plasma current due to weak dependence on magnetic field. The result obtained indicates that fast ion losses in Globus-M2, stimulated by toroidal Alfven eigenmodes are mostly determined by the shift of passing orbits to the plasma edge. With the increase of plasma current and magnetic field, neutron flux drops arising in the moments of toroidal mode bursts have also decreased. Keywords: TAE, NPA, spherical tokamak, fast ion losses
- W.W. Heidbrink. Phys. Plasmas, 15, 055501 (2008). DOI: 10.1063
- K.-L. Wong. Plasma Phys. Control. Fusion, 41, R1 (1999). DOI: 10.1088/0741-3335/41/1/001
- ITER Physics Expert Group on Energetic Particles, Heating and Current Drive and ITER Physics Basis Editors. Nucl. Fusion, 39, 2471 (1999). DOI: 10.1088/0029-5515/39/12/305
- S.E. Sharapov, M. Garcia-Munoz, M.A. Van Zeeland, B. Bobkov, I.G.J. Classen, J. Ferreira, A. Figueiredo, M. Fitzgerald, J. Galdon-Quiroga, D. Gallart, B. Geiger, J. Gonzalez-Martin, T. Johnson, P. Lauber, M. Mantsinen, F. Nabais, V. Nikolaeva, M. Rodriguez-Ramos, L. Sanchis-Sanchez, P.A. Schneider, A. Snicker, P. Vallejos and the AUG Team and the EUROfusion MST1 Team11. Plasma Phys. Control. Fusion, 60, 014026 (2018). DOI: 10.1088/1361-6587/aa90ee
- M.P. Gryaznevich, S.E. Sharapov. Plasma Phys. Controlled. Fusion, 46, S15 (2004). DOI: 10.1088/0741-3335/46/7/S02
- E.D. Fredrickson, C.Z. Cheng, D. Darrow, G. Fu, N.N. Gorelenkov, G. Kramer, S.S. Medley, J. Menard, L. Roquemore, D. Stutman, R.B. White. Phys. Plasmas, 16, 2852 (2003). DOI: 10.1063/1.1579493
- M.P. Gryaznevich, S.E. Sharapov. Nucl. Fusion, 40, 907 (2000). DOI: 10.1088/0029-5515/40/5/303
- V.V. Bulanin, V.K. Gusev, G.S. Kurskiev, V.B. Minaev, M.I. Patrov, A.V. Petrov, M.A. Petrov, Yu.V. Petrov, A.Yu. Tel'nova, A.Yu. Yashin. Tech. Phys. Lett., 43, 1067 (2017) DOI: 10.1134/S1063785017120033]
- Yu.V. Petrov, N.N. Bakharev, V.V. Bulanin, V.K. Gusev, G.S. Kurskiev, A.A. Martynovc, S.Yu. Medvedev, V.B. Minaev, M.I. Patrov, A.V. Petrov, N.V. Sakharov, P.B. Shchegolev, A.Yu. Telnova, S.Yu. Tolstyakov, A.Yu. Yashin. Plasma Phys. Rep., 25, 723 (2019) DOI: 10.1134/S1063780X19
- N.F. Cramer. The Physics of Alfven Waves (WILEY-VCH Verlag, Berlin, 2001), p. 201--204
- E.D. Fredrickson, N.A. Crocker, D.S. Darrow, N.N. Gorelenkov, G.J. Kramer, S. Kubota, M. Podesta, R.B. White, A. Bortolon, S.P. Gerhardt, R.E. Bell, A. Diallo, B. LeBlanc, F.M. Levinton, H. Yuh. Nucl. Fusion, 53, 013006 (2013). DOI: 10.1088/0029-5515/53/1/013006
- O.M. Jones, M. Cecconello, K.G. McClements, I. Klimek, R.J. Akers, W.U. Boeglin, D.L. Keeling, A.J. Meakins, R.V. Perez, S.E. Sharapov, M. Turnyanskiy and the MAST team. Plasma Phys. Control. Fusion, 57, 125009 (2015). DOI: 10.1088/0741-3335/57/12/125009
- E. Hirvijoki, A. Snicker, T. Korpilo, P. Lauber, E. Poli, M. Schneller, T. Kurki-Suonio. Comp. Phys. Communications, 183, 2589 (2012). DOI: 10.1016/j.cpc.2012.07.009
- V.B. Minaev, V.K. Gusev, N.V. Sakharov, V.I. Varfolomeev, N.N. Bakharev, V.A. Belyakov, E.N. Bondarchuk, P.N. Brunkov, F.V. Chernyshev, V.I. Davydenko, V.V. Dyachenko, A.A. Kavin, S.A. Khitrov, N.A. Khromov, E.O. Kiselev. Nucl. Fusion, 57, 066047 (2017). DOI: 10.1088/1741-4326/aa69e0
- V.K. Gusev, N.N. Bakharev, V.A. Belyakov, B.Ya. Ber, E.N. Bondarchuk, V.V. Bulanin, A.S. Bykov, F.V. Chernyshev, E.V. Demina, V.V. Dyachenko, P.R. Goncharov, A.E. Gorodetsky, E.Z. Gusakov, A.D. Iblyaminova, A.A. Ivanov. Nucl. Fusion, 55, 104016 (2015). DOI: 10.1088/0029-5515/55/10/104016
- V.K. Gusev, V.E. Go E.Z. Gusakov, V.V. D'yachenko, M.A. Irzak, V.B. Minaev, E.E. Mukhin, A.N. Novokhatskii, K.A. Podushnikova, G.T. Razdobarin, N.V. Sakharov, E.N. Tregubova, V.S. Uzlov, O.N. Shcherbinin, V.A. Belyakov, A.A. Kavin, Yu.A. Kostsov, E.G. Kuz'min, V.F. Soikin, E.A. Kuznetsov, V.A. Yagnov. Tech. Phys., 44, 1054 (1999). DOI: 10.1134/1.1259469]
- V.K. Gusev, A.V. Dech, L.A. Esipov, V.B. Minaev, A.G. Barsukov, G.B. Igon'kina, V.V. Kuznetsov, A.A. Panasenkov, M.M. Sokolov, G.N. Tilinin, A.V. Lupin, V.K. Markov. Tech. Phys., 52, 1127 (2007) DOI: 10.1134/S1063784207090058]
- A.Yu. Telnova, V.B. Minaev, P.B. Shchegolev, N.N. Bakharev, I.V. Shikhovtsev, V.I. Varfolomeev. J. Phys.: Conf. Ser., 1400, 077015 (2019). DOI: 10.1088/1742-6596/1400/7/077015
- N.N. Bakharev, F.V. Chernyshev, P.R. Goncharov, V.K. Gusev, A.D. Iblyaminova, V.A. Kornev, G.S. Kurskiev, A.D. Melnik, V.B. Minaev, M.I. Mironov, M.I. Patrov, Yu.V. Petrov, N.V. Sakharov, P.B. Shchegolev, S.Yu. Tolstyakov. Nucl. Fusion, 55, 043023 (2015). DOI: 10.1088/0029-5515/55/4/043023
- M.V. Iliasova, A.E. Shevelev, E.M. Khilkevitch, I.N. Chugunov, V.B. Minaev, D.B. Gin, D.N. Doinikov, I.A. Polunovsky, V.O. Naidenov, M.A. Kozlovskiy, M.F. Kudoyarov. Nucl. Instr. and Methods in Phys. Research, Section A, 983, 164590 (2020). DOI: 10.1016/j.nima.2020.164590
- N.N. Bakharev, I.M. Balachenkov, F.V. Chernyshev, I.N. Chugunov, V.V. Dyachenko, V.K. Gusev, M.V. Iliasova, E.M. Khilkevitch, N.A. Khromov, E.O. Kiselev, A.N. Konovalov, G.S. Kurskiev, V.B. Minaev, A.D. Melnik, I.V. Miroshnikov, A.N. Novokhatsky, M.I. Patrov, Yu.V. Petrov, N.V. Sakharov, P.B. Shchegolev, A.E. Shevelev, O.M. Skrekel, A.Yu. Telnova, V.A. Tokarev, S.Yu. Tolstyakov, E.A. Tukhmeneva, V.I. Varfolomeev, A.V. Voronin. Plasma Phys. Rep., 46, 675 (2020). DOI: 10.1134/S1063780X20070016]
- Yu.V. Petrov, N.N. Bakharev, V.K. Gusev, V.B. Minaev, V.A. Kornev, G.S. Kurskiev, M.I. Patrov, N.V. Sakharov, S.Yu. Tolstyakov, P.B. Shchegolev. J. Plasma Phys., 81, 515810601 (2015). DOI: 10.1017/S0022377815001129
- N.N. Bakharev, F.V. Chernyshev, V.K. Gusev, E.O. Kiselev, G.S. Kurskiev, M.M. Larionova, A.D. Melnik, V.B. Minaev, M.I. Mironov, I.V. Miroshnikov, Yu.V. Petrov, N.V. Sakharov, P.B. Shchegolev, O.M. Skrekel, A.Yu. Telnova, E.A. Tukhmeneva, V.I. Varfolomeev. Plasma Phys. Control. Fusion, 62, 125010 (2020). DOI: 10.1088/1361-6587/abbe32
- I.M. Balachenkov, Yu.V. Petrov, V.K. Gusev, N.N. Bakharev, V.V. Bulanin, V.I. Varfolomeev, V.V. Dyachenko, N.S. Zhiltsov, E.O. Kiselev, A.N. Konovalov, S.V. Krikunov, G.S. Kurskiev, V.B. Minaev, M.I. Patrov, A.V. Petrov, A.M. Ponomarenko, N.V. Sakharov, A.Yu. Telnova, P.B. Shchegolev, A.Yu. Yashin. J. Phys.: Conf. Ser. 1697, 012212 (2020). DOI: 10.1088/1742-6596/1697/1/012212
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.