Вышедшие номера
Метод определения частотных зависимостей коэффициентов затухания и связи оптического микрокольцевого резонатора с прямым волноводом
Ministry of Science and Higher Education of the Russian Federation , Goszadanie, FSEE-2022-0017
Никитин А.А. 1, Чекмезов К.Н.1, Ершов А.А. 1, Семенов А.А. 1, Устинов А.Б. 1
1Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), Санкт-Петербург, Россия
Email: aanikitin@etu.ru
Поступила в редакцию: 4 марта 2024 г.
В окончательной редакции: 2 мая 2024 г.
Принята к печати: 31 мая 2024 г.
Выставление онлайн: 27 июля 2024 г.

Предложен оригинальный метод определения параметров базовых компонентов фотонных интегральных схем в широком диапазоне частот. Метод позволяет по измеренным передаточным характеристикам микрокольцевого резонатора, используемого в качестве тестового элемента, находить частотные зависимости коэффициента связи микрокольцевого резонатора с прямым волноводом, а также коэффициента затухания, группового показателя преломления и дисперсионного коэффициента прямоугольных оптических волноводов, из которых изготовлена фотонная интегральная схема. Показана эффективность использования метода для определения перечисленных параметров фотонных интегральных схем, изготовленных по технологии кремний на изоляторе", в диапазоне частот 184-197 THz (что соответствует диапазону длин волн 1520-1630 nm). Расчет передаточных характеристик фотонных интегральных схем с использованием найденных параметров волноводов показал хорошее соответствие экспериментально измеренным характеристикам. Ключевые слова: фотонные интегральные схемы, оптические микроволноводы, кремний на изоляторе, неразрушающие методы.
  1. D. Marpaung, J. Yao, J. Capmany. Nature Photonics, 13 (2), 80 (2019). DOI: 10.1038/s41566-018-0310-5
  2. D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C.J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, M. Lonvcar. Adv. Opt. Photon., 13 (2), 242 (2021). DOI: 10.1364/AOP.411024
  3. S. Shekhar, W. Bogaerts, L. Chrostowski, J.E. Bowers, M. Hochberg, R. Soref, B.J. Shastri. Nature Commun., 15 (1), 751 (2024). DOI: 10.1038/s41467-024-44750-0
  4. Y.A. Vlasov, S.J. McNab. Opt. Еxpress, 12 (8), 1622 (2004). DOI: 10.1364/OPEX.12.001622
  5. W. Bogaerts, S.K. Selvaraja. IEEE Photon. J., 3 (3), 422 (2011). DOI: 10.1109/JPHOT.2011.2142931
  6. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Laser Photon. Rev., 6 (1), 47 (2012). DOI: 10.1002/lpor.201100017
  7. L. Vivien, L. Pavesi. Handbook of Silicon Photonics (Taylor \& Francis, 2016), DOI: 10.1201/b14668
  8. W. Bogaerts, L. Chrostowski. Laser Photon. Rev., 12 (4), 1700237 (2018). DOI: 10.1002/lpor.201700237
  9. S.Y. Siew, B. Li, F. Gao, H.Y. Zheng, W. Zhang, P. Guo, S.W. Xie, A. Song, B. Dong, L.W. Luo, C. Li, X. Luo, G.-Q. Lo. J. Lightwave Technol., 39 (13), 4374 (2021). DOI: 10.1109/jlt.2021.3066203
  10. W. Bogaerts, S.K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets. IEEE J. Selected Topics in Quant. Electron., 16 (1), 33 (2010). DOI: 10.1109/JSTQE.2009.2039680
  11. W. Bogaerts, S. Pathak, A. Ruocco, S. Dwivedi. Integrated Optics: Devices, Mater., Technol. XIX, 9365, 42 (2015). DOI: 10.1117/12.2082785
  12. F. Horst, W.M. Green, S. Assefa, S.M. Shank, Y.A. Vlasov, B.J. Offrein. Opt. Express, 21 (10), 11652 (2013). DOI: 10.1364/OE.21.011652
  13. B. Zhang, K. Al Qubaisi, M. Cherchi, M. Harjanne, Y. Ehrlichman, A.N. Khilo, M.A. Popovic. Opt. Lett., 45 (11), 3005 (2020). DOI: 10.1364/OL.395203
  14. K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang. IEEE Photon. Technol. Lett., 17 (2), 378 (2005). DOI: 10.1109/LPT.2004.839394
  15. G.B. Cao, F. Gao, J. Jiang, F. Zhang. IEEE Photon. Technol. Lett., 17 (8), 1671 (2005). DOI: 10.1109/LPT.2005.851959
  16. G.T. Reed, G. Mashanovich, F.Y. Gardes, D. Thomson. Nature Photon., 4 (8), 518 (2010). DOI: 10.1038/nphoton.2010.179
  17. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson. Opt. Express, 15 (2), 430 (2007). DOI: 10.1364/OE.15.000430
  18. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J.M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, J.M. Fedeli. Opt. Express, 20 (2), 1096 (2012). DOI: 10.1364/OE.20.001096
  19. L. Chen, M. Lipson. Opt. Express, 17 (10), 7901 (2009). DOI: 10.1364/OE.17.007901
  20. R. Soref, B. Bennett. IEEE J. Quant. Electron., 23 (1), 123 (1987). DOI: 10.1109/JQE.1987.1073206
  21. R. Dekker, N. Usechak, M. Forst, A. Driessen. J. Phys. D: Appl. Phys., 40 (14), R249 (2007). DOI: 10.1088/0022-3727/40/14/R01
  22. A.A. Nikitin, I.A. Ryabcev, A.A. Nikitin, A.V. Kondrashov, A.A. Semenov, D.A. Konkin, A.A. Kokolov, F.I. Sheyerman, L.I. Babak, A.B. Ustinov. Opt. Commun., 511, 127929 (2022). DOI: 10.1016/j.optcom.2022.127929
  23. A.A. Nikitin, A.V. Kondrashov, V.V. Vitko, I.A. Ryabcev, G.A. Zaretskaya, N.A. Cheplagin, D.A. Konkin, A.A. Kokolov, L.I. Babak, A.B. Ustinov, B.A. Kalinikos. Opt. Commun., 480, 126456 (2021). DOI: 10.1016/j.optcom.2020.126456
  24. S. Zhuang, J. Feng, H. Liu, S. Yuan, Y. Chen, H. Zeng. Opt. Commun., 507, 127637 (2022). DOI: 10.1016/j.optcom.2021.127637
  25. M. Borghi, S. Biasi, L. Pavesi. Sci. Reports, 11 (1), 15642 (2021). DOI: 10.1038/s41598-021-94952-5
  26. H. Zhang, J. Wen, Z. Wu, Q. Wang, H. Yu, Y. Zhang, Y. Pan, L. Yin, C. Wang, S. Qu. Opt. Commun., 558, 130374 (2024). DOI: 10.1016/j.optcom.2024.130374
  27. X. Ji, S. Roberts, M. Corato-Zanarella, M. Lipson. APL Photon., 6 (7), 071101 (2021). DOI: 10.1063/5.0057881
  28. J. Liu, G. Huang, R.N. Wang, J. He, A.S. Raja, T. Liu, N.J. Engelsen, T.J. Kippenberg. Nature Commun., 12 (1), 2236 (2021). DOI: 10.1038/s41467-021-21973-z
  29. W. Jin, Q.F. Yang, L. Chang, B. Shen, H. Wang, M.A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K.J. Vahala, J.E. Bowers. Nature Photon., 15 (5), 346 (2021). DOI: 10.1038/s41566-021-00761-7
  30. W.D. Sacher, J.C. Mikkelsen, Y. Huang, J.C.C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P.G.-Q. Lo, J.K.S. Poon. Proceed. IEEE, 106 (12), 2232 (2018). DOI: 10.1109/JPROC.2018.2860994
  31. Y. Xing, J. Dong, S. Dwivedi, U. Khan, W. Bogaerts. Photon. Res., 6 (11), 1008 (2018). DOI: 10.1364/PRJ.6.001008
  32. K.K. Lee, D.R. Lim, H.C. Luan, A. Agarwal, J. Foresi, L.C. Kimerling. Appl. Phys. Lett., 77 (11), 1617 (2000). DOI: 10.1063/1.1308532
  33. K.K. Lee, D.R. Lim, L.C. Kimerling, J. Shin, F. Cerrina. Opt. Lett., 26 (23), 1888 (2001). DOI: 10.1364/OL.26.001888
  34. D.G. Rabus. Integrated Ring Resonators (Springer-Verlag Berlin Heidelberg, 2007)
  35. I.P. Kaminow, L.W. Stulz. Appl. Phys. Lett., 33 (1), 62 (1978). DOI: 10.1063/1.90191
  36. T. Feuchter, C. Thirstrup. IEEE Photon. Technol. Lett., 6 (10), 1244 (1994). DOI: 10.1109/68.329652
  37. A.S.A. Sakai, G.H.G. Hara, T.B.T. Baba. Jpn. J. Appl. Phys., 40 (4B), L383 (2001). DOI: 10.1143/JJAP.40.L383
  38. V.R. Almeida, R.R. Panepucci, M. Lipson. Opt. Lett., 28 (15), 1302 (2003). DOI: 10.1364/OL.28.001302
  39. C.J. Oton, C. Manganelli, F. Bontempi, M. Fournier, D. Fowler, C. Kopp. Opt. Express, 24 (6), 6265 (2016). DOI: 10.1364/OE.24.006265
  40. A.A. Ershov, A.I. Eremeev, A.A. Nikitin, A.B. Ustinov. Microwave Opt. Technol. Lett., 65 (8), 2451 (2023). DOI: 10.1002/mop.33675
  41. Y. Gottesman, E.V.K. Rao, D.G. Rabus. J. Lightwave Technol., 22 (6), 1566 (2004). DOI: 10.1109/JLT.2004.829216
  42. Y. Gottesman, D.G. Rabus, E.V.K. Rao, B.-E. Benkelfat. IEEE Photon. Technol. Lett., 21 (19), 1399 (2009). DOI: 10.1109/LPT.2009.2025603
  43. И.А. Рябцев, А.А. Ершов, Д.В. Ряйккенен, А.П. Буровихин, Р.В. Гапончик, И.Ю. Таценко, А.А. Сташкевич, А.А. Никитин, А.Б. Устинов. Известия вузов России. Радиоэлектроника, 25 (6), 79 (2022). DOI: 10.32603/1993-8985-2022-25-6-79-89
  44. W.R. McKinnon, D.-X. Xu, C. Storey, E. Post, A. Densmore, A. Del\^age, P. Waldron, J.H. Schmid, S. Janz. Opt. Express, 17 (21), 18971 (2009). DOI: 10.1364/OE.17.018971
  45. J.E. Heebner, V. Wong, A. Schweinsberg, R.W. Boyd, D.J. Jackson. IEEE J. Quant. Electron., 40 (6), 726 (2004). DOI: 10.1109/JQE.2004.828232
  46. F. Xia, L. Sekaric, Y.A. Vlasov. Opt. Express, 14 (9), 3872, (2006). DOI: 10.1364/OE.14.003872
  47. A.A. Nikitin, V.V. Vitko, M.A. Cherkasskii, A.B. Ustinov, B.A. Kalinikos. Results Phys., 18, 103279 (2020). DOI: 10.1016/j.rinp.2020.103279
  48. F. Grillot, L. Vivien, S. Laval, E. Cassan. J. Lightwave Technol., 24 (2), 891 (2006). DOI: 10.1109/JLT.2005.861939
  49. L. Chrostowski, M. Hochberg. Silicon Photonics Design: from Devices to Systems (Cambridge University Press, 2015)
  50. D. Taillaert, P. Bienstman, R. Baets. Opt. Lett., 29 (13), 2749 (2004). DOI: 10.1364/OL.29.002749