Вышедшие номера
Исследование процесса гидрогенизации одностенных углеродных нанотрубок с помощью индукционно-связанной аргон-водородной плазмы
Российский научный фонд, 21-72-00076
Преображенский Е.И.1, Водопьянов А.В.1,2, Нежданов А.В.2
1Федеральный исследовательский центр Институт прикладной физики Российской академии наук, Нижний Новгород, Россия
2Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия
Email: evgenypr@ipfran.ru
Поступила в редакцию: 5 апреля 2023 г.
В окончательной редакции: 5 апреля 2023 г.
Принята к печати: 5 апреля 2023 г.
Выставление онлайн: 19 июня 2023 г.

Продемонстрирована возможность частичной гидрогенизации одностенных углеродных нанотрубок с помощью индукционно-связанной аргон-водородной плазмы. Изучено изменение спектра комбинационного рассеяния образцов одностенных углеродных нанотрубок при плазменной интеркаляции водородом в зависимости от времени обработки, мощности, поданной в плазму, материала подложки, на которую нанесены нанотрубки, а также управляющего внешнего напряжения. Продемонстрирована преимущественная роль ионов водорода на гидрогенизацию одностенных углеродных нанотрубок. Основные моменты: продемонстрирована частичная гидрогенизация одностенных углеродных нанотрубок; показано изменение свойств одностенных углеродных нанотрубок в процессе плазменной интеркаляции; изучено изменение спектра комбинационного рассеяния в зависимости от параметров процесса гидрогенизации; показано влияние ионов водорода на одностенные углеродные нанотрубки в плазменном разряде. Ключевые слова: плазмохимия, одностенные углеродные нанотрубки, гидрогенизация, индукционно-связанная плазма.
  1. Q. Peng, J. Crean, L. Han, S. Liu, X. Wen, S. De, A. Dearden. Nanotechnology, Science and Applications, 1 (2014). DOI: 10.2147/NSA.S40324
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science, 306 (5696), 666 (2004). DOI:10.1126/science.1102896
  3. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim. Chem. Rev., 112 (11), 6156 (2012). DOI:10.1021/cr3000412
  4. S.M. Tan, Z. Sofer, M. Pumera. Electroanalysis, 25 (3), 703 (2013). DOI: 10.1002/elan.201200634
  5. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov. Science, 323 (5914), 610 (2009). DOI: 10.1126/science.1167130
  6. K.E. Whitener. J. Vacuum Sci. Technol. A, 36 (5), 05G401 (2018). DOI: 10.1116/1.5034433
  7. T. Hussain, A. de Sarkar, R. Ahuja. Appl. Phys. Lett., 101 (10), 103907 (2012). DOI: 10.1063/1.4751249
  8. E.I. Preobrazhensky, I.V. Oladyshkin, M.D. Tokman. Phys. Scripta, 97 (11), 115803 (2022). DOI: 10.1088/1402-4896/ac9564
  9. A. Vodopyanov, E. Preobrazhensky, A. Nezhdanov, M. Zorina, A. Mashin, R. Yakimova, D. Gogova. Superlattices and Microstructures, 160, 107066 (2021). DOI: 10.1016/j.spmi.2021.107066
  10. M. Wojtaszek, N. Tombros, A. Caretta, P.H.M. van Loosdrecht, B.J. van Wees. J. Appl. Phys., 110 (6), 063715 (2011). DOI: 10.1063/1.3638696
  11. R. Yakimova, C. Virojanadara, D. Gogova, M. Syvajarvi, D. Siche, K. Larsson, L.I. Johansson. Mater. Sci. Forum, 645-648, 565 (2010). DOI: 10.4028/www.scientific.net/MSF.645-648.565
  12. M. Brzhezinskaya, E.A. Belenkov, V.A. Greshnyakov, G.E. Yalovega, I.O. Bashkin. J. Alloys Compounds, 792, 713 (2019). DOI: 10.1016/j.jallcom.2019.04.107
  13. M. Brzhezinskaya, V. Shmatko, G. Yalovega, A. Krestinin, I. Bashkin, E. Bogoslavskaja. J. Electron Spectroscopy and Related Phenomena, 196, 99-103 (2014). DOI: 10.1016/j.elspec.2013.12.013
  14. B.N. Khare, M. Meyyappan, A.M. Cassell, C.V. Nguyen, J. Han. Nano Lett., 2 (1), 73 (2002). DOI: 10.1021/nl015646j
  15. M. Brzhezinskaya, O. Kononenko, V. Matveev, A. Zotov, I.I. Khodos, V. Levashov, V. Volkov, S.I. Bozhko, S.V. Chekmazov, D. Roshchupkin. ACS Nano, 15 (7), 12358 (2021). DOI: 10.1021/acsnano.1c04286
  16. I. Shtepliuk, I.G. Ivanov, T. Iakimov, R. Yakimova, A. Kakanakova-Georgieva, P. Fiorenza, F. Giannazzo. Mater. Sci. Semicond. Processing, 96, 145 (2019). DOI: 10.1016/j.mssp.2019.02.039
  17. A.C. Ferrari. Solid State Communic., 143 (1-2), 47 (2007). DOI:10.1016/j.ssc.2007.03.052
  18. K.P. Meletov, A.A. Maksimov, I.I. Tartakovskii, J. Arvanitidis, D. Christofilos, G.A. Kourouklis. J. Experimental Theoretical Phys., 112 (6), 979 (2011). DOI: 10.1134/S1063776111040091
  19. A.V. Talyzin, S. Luzan, I.V. Anoshkin, A.G. Nasibulin, H. Jiang, E.I. Kauppinen, V.M. Mikoushkin, V.V. Shnitov, D.E. Marchenko, D. Noreus. ACS Nano, 5 (6), 5132 (2011). DOI: 10.1021/nn201224k
  20. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio. Phys. Reports, 409 (2), 47 (2005). DOI: 10.1016/j.physrep.2004.10.006
  21. S.V. Rotkin, S. Subramoney. Applied Physics of Carbon Nanotubes (Springer, Berlin, Heidelberg, 2005), DOI: 10.1007/3-540-28075-8

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.