Вышедшие номера
Исследование структуры градиентного аморфного углерода, полученного закалкой жидкого углерода
Дождиков В.С. 1, Башарин А.Ю. 1, Левашов П.Р. 1
1Объединенный институт высоких температур РАН, Москва, Россия
Email: vdozh@mail.ru, ayb@iht.mpei.ac.ru, pasha@jiht.ru
Поступила в редакцию: 16 августа 2022 г.
В окончательной редакции: 5 января 2023 г.
Принята к печати: 9 января 2023 г.
Выставление онлайн: 17 февраля 2023 г.

Предложен новый метод получения градиентного аморфного углерода, использующий закалку расплава графита на алмазной подложке. С помощью молекулярно-динамического моделирования закалки жидкого углерода на холодной алмазной подложке показано, что полученный в эксперименте аморфный углерод является материалом с сильно градиентными структурой и свойствами по глубине образца. Это связано с уменьшением скорости закалки при удалении от подложки в диапазоне 1014-1012 K/s. При этом плотность аморфного углерода изменяется от 1.50 до 1.93 g/cm3. Исследовано пространственное изменение структурных характеристик полученного аморфного углерода: распределение атомов углерода по степени гибридизации химической связи (sp1-, sp2-, sp3-), радиальная функция распределения, угловая функция распределения, и проведен статистический анализ углеродных колец. Показано, что при давлении в жидкости 1 GPa углеродная структура в пределах закаленной зоны изменяется от высокопористой структуры с большим количеством цепочек sp1-атомов углерода вблизи подложки до структуры аморфного графена на периферии. Ключевые слова: аморфный углерод, жидкий углерод, закалка, молекулярная динамика, радиальная функция распределения.
  1. N.F. Marks. Amorphous Carbon and Related Materials. In: Computer-Based Modeling of Novel Carbon Systems and Their Properties: Beyond Nanotubes (Springer, Dordrecht, 2010), DOI: 10.1007/978-1-4020-9718-8_5
  2. H.K. Tran, C.E. Johnson, D.J. Rasky, F.C.L. Hui, M.-T. Hsu, Y.K. Chen. Phenolic Impregnated Carbon Ablators (PICA) for Discovery Class Missions. In: 31st AIAA Thermophys. Conf. (New Orleans, 1996), p. 1911. DOI: 10.2514/6.1996-1911
  3. A.S.V. Pulickel, M.B. Chaudhari. Int. J. Appl. Res. Mech. Eng., 1 (3), 1 (2012). DOI: 10.47893/IJARME.2012.1039
  4. Y. Liu, A. Erdemir, E.I. Meletis. Surf. Coatings Technol., 82, 48 (1996). DOI: 10.1016/0257-8972(95)02623-1
  5. J. Robertson. Mater. Sci. Eng. Reports, 37 (4-6), 129 (2002). DOI: 10.1016/S0927-796X(02)00005-0
  6. H. Tsai, D.B. Bogy. J. Vac. Sci. Technol. A: Vacuum, Surfaces and Films, 5 (6), 3287 (1987). DOI: 10.1116/1.574188
  7. L. Colombo, A. Fasolino. Computer-Based Modeling of Novel Carbon Systems and Their Properties: Beyond Nanotubes (Springer, Berlin, 2010), DOI: 10.1007/978-1-4020-9718-8
  8. M. Niino, T. Hirai, R. Watanabe. J. Jpn. Soc. Compos. Mater., 13, 257 (1987)
  9. P.M. Pandey, S. Rathee, M. Srivastava, P.K. Jain. Functionally Graded Materials (FGMs). Fabrication, Properties, Applications, and Advancements (Taylor \& Francis Group, LLC, CRC Press, 2022), DOI: 10.1201/9781003097976
  10. J.C. Sung, J. Lin. Diamond Nanotechnology: Synthesis and Applications (Jenny Stanford Publishing, NY., 2010), DOI: 10.1201/9780429066498
  11. А.Ю. Башарин, В.С. Дождиков, В.Т. Дубинчук, А.В. Кириллин, И.Ю, Лысенко, М.А. Турчанинов. Письма в ЖТФ, 35 (9), 84 (2009). [A.Y. Basharin, V.S. Dozhdikov, V.T. Dubinchuk, A.V. Kirilin, I.Y. Lysenko, M.A. Turchaninov. Tech. Phys. Lett., 35, 428 (2009). DOI: 10.1134/S1063785009050137]
  12. В.С. Дождиков, А.Ю. Башарин, П.Р. Левашов. ТВТ, 59 (5), 755 (2021). DOI: 10.31857/S0040364421050045
  13. V.S. Dozhdikov, A.Yu. Basharin, P.R. Levashov. J. Physics: Conf. Series, 653 (1), 012091 (2015). DOI: 10.1088/1742-6596/653/1/012091
  14. V.S. Dozhdikov, A.Yu. Basharin, P.R. Levashov. J. Physics: Conf. Series, 1147 (1), 012008 (2019). DOI: 10.1088/1742-6596/1147/1/012008
  15. G. Galli, R.M. Martin, R. Car, M. Farrinello. Phys. Rev. Lett., 62 (5), 555 (1989). DOI: 10.1103/PhysRevLett.62.555
  16. C.Z. Wang, K.M. Ho. Phys. Rev. Lett., 71 (8), 1184 (1993). DOI: 10.1103/PhysRevLett.71.1184
  17. N.A. Marks, D.R. McKenzie, B.A. Pailthorpe, M. Bernasconi, M. Parrinello. Phys. Rev. Lett., 76 (5), 768 (1996). DOI: 10.1103/PhysRevLett.76.768
  18. D.G. McCulloch, D.R. McKenzie, C.M. Goringe. Phys. Rev. B, 61 (3), 2349 (2000). DOI: 10.1103/PhysRevB.61.2349
  19. N.A. Marks, N.C. Cooper, D.R. McKenzie, D.G. McCulloch, P. Bath, S.P. Russo. Phys. Rev. B, 65 (7), 075411 (2002). DOI: 10.1103/PhysRevB.65.075411
  20. C. Mathioudakis, G. Kopidakis, P.C. Kelires, C.Z. Wang, K.M. Ho. Phys. Rev. B, 70 (12), 125202 (2004). DOI: 10.1103/PhysRevB.70.125202
  21. T. Kumagai, S. Hara, J. Choi, S. Izumi, T. Kato. J. App. Phys., 105 (6), 064310 (2009). DOI: 10.1063/1.3086631
  22. Z.D. Sha, P.S. Branicio, Q.X. Pei, V. Sorkin, Y.W. Zhang. Comput. Mater. Sci., 67, 146 (2013). DOI: 10.1016/j.commatsci.2012.08.042
  23. L. Li, M. Xu, W. Song, A. Ovcharenko, G. Zhang, D. Jia. Appl. Surf. Sci., 286, 287 (2013). DOI: 10.1016/j.apsusc.2013.09.073
  24. L.J. Peng, J.R. Morris. Carbon, 50 (3), 1394 (2012). DOI: 10.1016/j.carbon.2011.11.012
  25. C. de Tomas, I. Suarez-Martinez, N.A. Marks. Carbon, 109, 681 (2016). DOI: 10.1016/j.carbon.2016.08.024
  26. R. Ranganathan, S. Rokkam, T. Desai, P. Keblinski. Carbon, 113, 87 (2017). DOI: 10.1016/j.carbon.2016.11.024
  27. V.L. Deringer, G. Csanyi1. Phys. Rev. B, 95 (9), 094203 (2017). DOI: 10.1103/PhysRevB.95.094203
  28. P. Rowe, V.L. Deringer, P. Gasparotto, G. Csanyi, A. Michaelides. J. Chem. Phys., 153 (3), 034702 (2020). DOI: 10.1063/5.0005084
  29. M.W. Thompson, B. Dyatkin, H.W. Wang, C.H. Turner, X. Sang, R.R. Unocic, C.R. Iacovella, Y. Gogotsi, A.C.T. van Duin, P.T. Cummings. J. Carbon Research, 3 (4), 32 (2017). DOI: 10.3390/c3040032
  30. X. Li, A. Wang, K.-R. Lee. Comput. Mater. Sci., 151, 246 (2018). DOI: 10.1016/j.commatsci.2018.04.062
  31. K. Li, H. Zhang, G. Li, J. Zhang, M. Bouhadja, Z. Liu, A.A. Skelton, M. Barati. J. Chem. Theory Comput., 14 (5), 2322 (2018). DOI: 10.1021/acs.jctc.7b01296
  32. C. de Tomas, A. Aghajamali, J.L. Jones, D.J. Lim, M.J. Lopez, I. Suarez-Martinez, N.A. Marks. Carbon, 155, 624 (2019). DOI: 10.1016/j.carbon.2019.07.074
  33. R. Jana, D. Savio, V.L. Deringer, L. Pastewka. Modelling Simul. Mater. Sci. Eng., 27 (8), 085009 (2019). DOI: 10.1088/1361-651X/ab45da
  34. Q. Liu, L. Li, Y.R. Jeng, G. Zhang, C. Shuai, X. Zhu. Comput. Mater. Sci., 184, 109939 (2020). DOI: 10.1016/j.commatsci.2020.109939
  35. B. Bhattarai, D.A. Drabold. Carbon, 115, 532 (2017). DOI: 10.1016/j.carbon.2017.01.031
  36. N. Orekhov, G. Ostroumova, V. Stegailov. Carbon, 170, 606 (2020). DOI: 10.1016/j.carbon.2020.08.009
  37. N.A. Marks. Phys. Rev. B., 56 (5), 2441 (1997). DOI: 10.1103/PhysRevB.56.2441
  38. L.M. Meji a-Mendoza, M. Valdez-Gonzalez, Jesus Muniz, U. Santiago, A.K. Cuentas-Gallegos, M. Robles. Carbon, 120, 233 (2017). DOI: 10.1016/j.carbon.2017.05.043
  39. L. Alonso, J.A. Alonso, M.J. Lopez. Computer Simulations of the Structure of Nanoporous Carbons and Higher Density Phases of Carbon. In: Many-body Approaches at Different Scales (Springer, Cham., Catania, 2018), DOI: 10.1007/978-3-319-72374-7_3
  40. J.C. Palmer, K.E. Gubbins. Microporous and Мesoporous Mater., 154, 24 (2012). DOI: 10.1016/j.micromeso.2011.08.017
  41. V.S. Dozhdikov, A.Yu. Basharin, P.R. Levashov, D.V. Minakov. J. Chem. Phys., 147 (21), 214302 (2017). DOI: 10.1063/1.4999070
  42. L. Liu, Yi. Liu, S.V. Zybin, H. Sun, W.A. Goddard III. J. Phys. Chem. A, 115 (40), 11016 (2011). DOI: 10.1021/jp201599t
  43. A.C. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III. J. Phys. Chem. A, 105 (41), 9396 (2001). DOI: 10.1021/jp004368u
  44. S.B. Kylasa, H.M. Aktulga, A.Y. Grama. J. Comput. Phys., 272, 343 (2014). DOI: 10.1016/j.jcp.2014.04.035
  45. S. Plimpton. J. Comp. Phys., 117 (1), 1 (1995). DOI: 10.1006/jcph.1995.1039 (https://lammps.sandia.gov/index.html)
  46. N.A. Marks, D.R. McKenzie, B.A. Pailthorpe, M. Bernasconi, M. Parrinello. Phys. Rev. B, 54 (14), 9703 (1996). DOI: 10.1103/PhysRevB.54.9703
  47. S. Best, J.B. Wasley, C. de Tomas, A. Aghajamali, I. Suarez-Martinez, N.A. Marks. C.-J. Carbon Research, 6 (3), 50 (2020). DOI: 10.3390/c6030050
  48. D.R. McKenzie, A.R. Merchant, D.G. McCulloch, H. Malloch, N.A. Marks, M.M.M. Bilek. Surf. Coat. Technol., 198 (1-3), 212 (2005). DOI: 10.1016/j.surfcoat.2004.10.043
  49. B. Bhattarai, P. Biswas, R. Atta-Fynn, D.A. Drabold. Phys. Chem. Chem. Phys., 20 (29), 19546 (2018). DOI: 10.1039/C8CP02545B
  50. R.C. Powles, N.A. Marks, D.W.M. Lau. Phys. Rev. B, 79 (7), 075430 (2009). DOI: 10.1103/PhysRevB.79.075430
  51. N. Orekhov, M. Logunov. Carbon, 192, 179 (2022). DOI: 10.1016/j.carbon.2022.02.058
  52. Y. Hiraokaa, T. Nakamuraa, A. Hirataa, E.G. Escolara, K. Matsueb, Y. Nishiuraa. Proc. Natl. Acad. Sci. U.S.A., 113 (26), 7035 (2016). DOI: 10.1073/pnas.152087711
  53. Y. Shi, J. Neuefeind, D. Ma, K. Page, L.A. Lamberson, N.J. Smith, A. Tandia, A.P. Song. J. Non-Cryst. Solids, 516, 71 (2019). DOI: 10.1016/j.jnoncrysol.2019.03.037
  54. V.L. Deringer, N. Bernstein, A.P. Bartok, M.J. Cliffe, R.N. Kerber, L.E. Marbella, C.P. Grey, S.R. Elliott, G. Csanyi. J. Phys. Chem. Lett., 9 (11), 2879 (2018). DOI: 10.1021/acs.jpclett.8b00902
  55. S.V. King. Nature, 213 (5081), 1112 (1967). DOI: 10.1038/2131112a0
  56. S. Le Roux, V. Petkov. J. Appl. Cryst. 43 (1), 181 (2010). DOI: 10.1107/S0021889809051929
  57. S. Le Roux, P. Jund. Comput. Mater. Sci., 49 (1), 70 (2010). DOI: 10.1016/j.commatsci.2010.04.023

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.