Physics of the Solid State
Volumes and Issues
The crystal structure features of Ca-substituted ferrites La1-xCaxFeO3-γ
Sedykh V. D. 1, Rusakov V. S. 2, Rybchenko O. G. 1, Gapochka A. M. 2, Mutsnev M. E. 2, Toporkova A. A. 1, Ivanov A. I.1, Kulakov V. I.1
1Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
2Lomonosov Moscow State University, Moscow, Russia
Email: sedykh@issp.ac.ru, rusakovvs@mail.ru, orybch@issp.ac.ru, al-gap@physics.msu.ru, mike@haali.su, anna.toporkova@list.ru, aliv@issp.ac.ru, kulakov@issp.ac.ru

PDF
The crystal structure features of the Ca-substituted lanthanum ferrite La1-xCaxFeO3-γ have been studied as the Ca concentration dependence (x=0.0, 0.3, 0.5, 0.7, 1.0) using X-ray diffraction analysis and Mossbauer spectroscopy. It has been investigated both the synthesized samples and the samples annealed at 650 oC in vacuum, when Fe4+ ions are completely transferred to Fe3+. When the Ca concentration is x<0.5, the Pbnm orthorhombic phase is formed. At higher Ca concentrations (x>0.5) - the vacancy-ordered Grenier (LaCa2Fe3O8) and Brounmillerite (Ca2Fe2O5) phases are formed. The portion of each valence Fe state, the number of oxygen vacancies, and oxygen content were determined using the low-temperature Mossbauer data for all the samples studied. The synthesized sample with x=0.5 has a maximum number of Fe4+ ions. The Fe ions are in a trivalent state for the initial and last numbers of the concentration series, x=0 (LaFeO3) and x=1 (Ca2Fe2O5). In the synthesized samples, the relation of contributions of the different Fe3+ ion structural states to the Mossbauer spectrum has been shown to change towards the oxygen environments characteristic of the vacancy-ordered phases when increasing Ca concentration. The vacuum annealing (when there are no Fe4+ ions) results in the formation of lower defective local environment of Fe ions. Keywords: orthoferrites, Fe valence states, oxygen vacancies, Mossbauer spectroscopy, X-ray diffraction.
  1. M. High, C.F. Patzschke, L. Zheng, D. Zeng, O. Gavalda-Diaz, N. Ding, K.H.H. Chien, Z. Zhang, G.E. Wilson, A.V. Berenov, S.J. Skinner, K.L. Sedransk Campbell, R. Xiao, P.S. Fennell, Q. Song. Nature Commun. 13, 1, 5109 (2022)
  2. S. Hu, L. Zhang, H. Liu, Z. Cao, W. Yu, X. Zhu, W. Yang. J. Power Sources 443, 227268 (2019)
  3. D. Mishra, J. Nanda, S. Parida, K.J. Sankaran, S. Ghadei. J. Sol-Gel Sci. Technol. 111, 2, 381 (2024). https://doi.org/10.1007/s10971-024-06452-3
  4. N. Suresh Kumar, K. Chandra Babu Naidu. J. Materiomics 7, 5, 940 (2021). https://doi.org/10.1016/j.jmat.2021.04.002
  5. X. Su, H. Shan, Y. Tian, W. Guo, P. Zhao, L. Xue, Y. Zhang. J. Environ. Chem. Eng. 13, 3, 116517 (2025)
  6. P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.-H. Kim, A. Deep. Nano Energy 80, 105552 (2021). https://doi.org/10.1016/j.nanoen.2020.105552
  7. E.K. Abdel-Khalek, D.A. Rayan, A.A. Askar, M.I.A. Abdel Maksoud, H.H. El-Bahnasawy. J. Sol-Gel Sci. Technol, 97, 1, 27 (2021)
  8. Y. Shin, K.-Y. Doh, S.H. Kim, J.H. Lee, H. Bae, S.-J. Song, D. Lee. J. Mater. Chem. A 8, 9, 4784 (2020). https://doi.org/10.1039/c9ta12734h
  9. J.B. Goodenough. In: Progress in Solid State Chemistry, v. 5 / Ed. H. Reiss. Pergamon, London (1971). P. 145
  10. J.B. Goodenough. In: Magnetism and the Chemical Bond, v. 1 / Ed. F. Albert Cotton. Interscience, London (1963). P. 154
  11. P.D. Battle, N.C. Gibb, S. Nixon. J. Solid State Chem. 79, 1, 75 (1989)
  12. V.D. Sedykh, O.G. Rybchenko, A.I. Dmitriev, V.I. Kulakov, A.M. Gapochka, V.S. Rusakov. Phys. Solid State 66, 11, 1189 (2024)
  13. M. Romero, R.W. Gomez, V. Marquina, J.L. Perez-Mazariego, R. Escamilla. Physica B 443, 90 (2014)
  14. S. Palimar, S.D. Kaushik, V. Siruguri, D. Swain, A.E. Viegas, C. Narayana, N.G. Sundaram. Dalton Trans. 45, 34, 13547 (2016)
  15. J.E. Auckett, G.J. McIntyre, M. Avdeev, H. De Bruyn, T.T. Tan, S. Li, C.D. Ling. J. Appl. Cryst. 48, 1, 273 (2015)
  16. R. Ghani, M.S. Mahboub, S. Zeroual, M. Mimouni, O. Ben Ali, B. Hani, M. Ghougali. Phys. Chem. Solid State 23, 2, 249 (2022)
  17. J. Grenier, N. Ea, M. Pouchard, M.M. Abou-Sekkina. Mater. Res. Bull. 19, 10, 1301 (1984)
  18. D.J. Goossens, L.S.F. Henderson, S. Trevena, J.M. Hudspeth, M. Avdeev, J.R. Hester. J. Solid State Chem. 196, 238 (2012). http://dx.doi.org/10.1016/j.jssc.2012.06.029
  19. V.A. Kolotygin, E.V. Tsipis, M.V. Patrakeev, J.C. Waerenborgh, V.V. Kharton. Mater. Lett. 239, 167 (2019). https://doi.org/10.1016/j.matlet.2018.11.180
  20. V.D. Sedykh, O.G. Rybchenko, N.V. Barkovskii, A.I. Ivanov, V.I. Kulakov. FTT 63, 10, 1648 (2021). (in Russian). https://doi.org/10.21883/FTT.2021.10.51418.128 [V.D. Sedykh, O.G. Rybchenko, N.V. Barkovskii, A.I. Ivanov, V.I. Kulakov. Phys. Solid State 63, 10, 1775 (2021).]
  21. V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids 171, 111001 (2022). https://doi.org/10.1016/j.jpcs.2022.111001
  22. V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov. Ceram. Int. 49, 15, 25640 (2023). https://doi.org/10.1016/j.ceramint.2023.05.105
  23. R.D. Shannon. Acta Cryst. A 32, 5, 751 (1976)
  24. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proceed. 1489, 1, 178 (2012). https://doi.org/10.1063/1.4759488
  25. V.D. Sedykh, O.G. Rybchenko, V.S. Rusakov, A.M. Gapochka, A.I. Dmitriev, E.A. Pershina, S.V. Zaitsev, K.P. Meletov, V.I. Kulakov, A.I. Ivanov. FTT 67, 1, 206 (2025). (in Russian)
  26. K. Zhou, H. Cao, K. Gao, J. Shen, Z. Lu, Z. Wu, M. Liu. Modern Phys. Lett. B 37, 35, 2350188 (2023)
  27. A.N. Nadeev, S.V. Tsybulya, E.Yu. Gerasimov, N.A. Kulikovskaya, L.A. Isupova. J. Structural Chem. 51, 5, 891 (2010)
  28. P.M. Price, N.D. Browning, D.P. Butt. J. Am. Ceram. Soc. 98, 7, 2248 (2015). https://doi.org/10.1111/jace.13474
  29. M. Vallet-Regi, J. Gonzalez-Calbet, M.A. Alario-Franco, J.-C. Grenier, P. Hagenmuller. J. Solid State Chem. 55, 3, 25l (1984)
  30. M.A. Alario-Franco, J.M. Gonzalez-Calbet, M. Vallet-Regi, J.-C. Grenier. J. Solid State Chem. 49, 2, 219 (1983)
  31. M.A. Alario-Franco, M.J.R. Henche, M. Vallet, J.M.G. Calbet, J.-C. Grenier, A. Wattiaux, P. Hagenmuller. J. Solid State Chem. 46, 1, 23 (1983)
  32. J.C. Grenier, L. Fourn\`es, M. Pouchard, P. Hagenmuller, S. Komornicki. Mater. Res. Bull. 17, 1, 55 (1982). https://doi.org/10.1016/0025-5408(82)90183-0
  33. G.A. Sawatzky, F. van der Woude. J. Physique Colloq. 35, C6, 47 (1974)
  34. V.I. Nikolaev, V.S. Rusakov. Messbauerovskie issledovaniya ferritov. Izd-vo Mosk. Un-ta, M. (1985). 224 p. (in Russian)
  35. Y. Shin, G. Galli. npj Comput. Mater. 9, 1, 218 (2023). https://doi.org/10.1038/s41524-023-01175-5
  36. T.C. Gibb. J. Solid State Chem. 74, 1, 176 (1988).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru