Sedykh V. D.
1, Rusakov V. S.
2, Rybchenko O. G.
1, Gapochka A. M.
2, Mutsnev M. E.
2, Toporkova A. A.
1, Ivanov A. I.1, Kulakov V. I.1
1Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
2Lomonosov Moscow State University, Moscow, Russia
Email: sedykh@issp.ac.ru, rusakovvs@mail.ru, orybch@issp.ac.ru, al-gap@physics.msu.ru, mike@haali.su, anna.toporkova@list.ru, aliv@issp.ac.ru, kulakov@issp.ac.ru
The crystal structure features of the Ca-substituted lanthanum ferrite La1-xCaxFeO3-γ have been studied as the Ca concentration dependence (x=0.0, 0.3, 0.5, 0.7, 1.0) using X-ray diffraction analysis and Mossbauer spectroscopy. It has been investigated both the synthesized samples and the samples annealed at 650 oC in vacuum, when Fe4+ ions are completely transferred to Fe3+. When the Ca concentration is x<0.5, the Pbnm orthorhombic phase is formed. At higher Ca concentrations (x>0.5) - the vacancy-ordered Grenier (LaCa2Fe3O8) and Brounmillerite (Ca2Fe2O5) phases are formed. The portion of each valence Fe state, the number of oxygen vacancies, and oxygen content were determined using the low-temperature Mossbauer data for all the samples studied. The synthesized sample with x=0.5 has a maximum number of Fe4+ ions. The Fe ions are in a trivalent state for the initial and last numbers of the concentration series, x=0 (LaFeO3) and x=1 (Ca2Fe2O5). In the synthesized samples, the relation of contributions of the different Fe3+ ion structural states to the Mossbauer spectrum has been shown to change towards the oxygen environments characteristic of the vacancy-ordered phases when increasing Ca concentration. The vacuum annealing (when there are no Fe4+ ions) results in the formation of lower defective local environment of Fe ions. Keywords: orthoferrites, Fe valence states, oxygen vacancies, Mossbauer spectroscopy, X-ray diffraction.
- M. High, C.F. Patzschke, L. Zheng, D. Zeng, O. Gavalda-Diaz, N. Ding, K.H.H. Chien, Z. Zhang, G.E. Wilson, A.V. Berenov, S.J. Skinner, K.L. Sedransk Campbell, R. Xiao, P.S. Fennell, Q. Song. Nature Commun. 13, 1, 5109 (2022)
- S. Hu, L. Zhang, H. Liu, Z. Cao, W. Yu, X. Zhu, W. Yang. J. Power Sources 443, 227268 (2019)
- D. Mishra, J. Nanda, S. Parida, K.J. Sankaran, S. Ghadei. J. Sol-Gel Sci. Technol. 111, 2, 381 (2024). https://doi.org/10.1007/s10971-024-06452-3
- N. Suresh Kumar, K. Chandra Babu Naidu. J. Materiomics 7, 5, 940 (2021). https://doi.org/10.1016/j.jmat.2021.04.002
- X. Su, H. Shan, Y. Tian, W. Guo, P. Zhao, L. Xue, Y. Zhang. J. Environ. Chem. Eng. 13, 3, 116517 (2025)
- P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.-H. Kim, A. Deep. Nano Energy 80, 105552 (2021). https://doi.org/10.1016/j.nanoen.2020.105552
- E.K. Abdel-Khalek, D.A. Rayan, A.A. Askar, M.I.A. Abdel Maksoud, H.H. El-Bahnasawy. J. Sol-Gel Sci. Technol, 97, 1, 27 (2021)
- Y. Shin, K.-Y. Doh, S.H. Kim, J.H. Lee, H. Bae, S.-J. Song, D. Lee. J. Mater. Chem. A 8, 9, 4784 (2020). https://doi.org/10.1039/c9ta12734h
- J.B. Goodenough. In: Progress in Solid State Chemistry, v. 5 / Ed. H. Reiss. Pergamon, London (1971). P. 145
- J.B. Goodenough. In: Magnetism and the Chemical Bond, v. 1 / Ed. F. Albert Cotton. Interscience, London (1963). P. 154
- P.D. Battle, N.C. Gibb, S. Nixon. J. Solid State Chem. 79, 1, 75 (1989)
- V.D. Sedykh, O.G. Rybchenko, A.I. Dmitriev, V.I. Kulakov, A.M. Gapochka, V.S. Rusakov. Phys. Solid State 66, 11, 1189 (2024)
- M. Romero, R.W. Gomez, V. Marquina, J.L. Perez-Mazariego, R. Escamilla. Physica B 443, 90 (2014)
- S. Palimar, S.D. Kaushik, V. Siruguri, D. Swain, A.E. Viegas, C. Narayana, N.G. Sundaram. Dalton Trans. 45, 34, 13547 (2016)
- J.E. Auckett, G.J. McIntyre, M. Avdeev, H. De Bruyn, T.T. Tan, S. Li, C.D. Ling. J. Appl. Cryst. 48, 1, 273 (2015)
- R. Ghani, M.S. Mahboub, S. Zeroual, M. Mimouni, O. Ben Ali, B. Hani, M. Ghougali. Phys. Chem. Solid State 23, 2, 249 (2022)
- J. Grenier, N. Ea, M. Pouchard, M.M. Abou-Sekkina. Mater. Res. Bull. 19, 10, 1301 (1984)
- D.J. Goossens, L.S.F. Henderson, S. Trevena, J.M. Hudspeth, M. Avdeev, J.R. Hester. J. Solid State Chem. 196, 238 (2012). http://dx.doi.org/10.1016/j.jssc.2012.06.029
- V.A. Kolotygin, E.V. Tsipis, M.V. Patrakeev, J.C. Waerenborgh, V.V. Kharton. Mater. Lett. 239, 167 (2019). https://doi.org/10.1016/j.matlet.2018.11.180
- V.D. Sedykh, O.G. Rybchenko, N.V. Barkovskii, A.I. Ivanov, V.I. Kulakov. FTT 63, 10, 1648 (2021). (in Russian). https://doi.org/10.21883/FTT.2021.10.51418.128 [V.D. Sedykh, O.G. Rybchenko, N.V. Barkovskii, A.I. Ivanov, V.I. Kulakov. Phys. Solid State 63, 10, 1775 (2021).]
- V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids 171, 111001 (2022). https://doi.org/10.1016/j.jpcs.2022.111001
- V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov. Ceram. Int. 49, 15, 25640 (2023). https://doi.org/10.1016/j.ceramint.2023.05.105
- R.D. Shannon. Acta Cryst. A 32, 5, 751 (1976)
- M.E. Matsnev, V.S. Rusakov. AIP Conf. Proceed. 1489, 1, 178 (2012). https://doi.org/10.1063/1.4759488
- V.D. Sedykh, O.G. Rybchenko, V.S. Rusakov, A.M. Gapochka, A.I. Dmitriev, E.A. Pershina, S.V. Zaitsev, K.P. Meletov, V.I. Kulakov, A.I. Ivanov. FTT 67, 1, 206 (2025). (in Russian)
- K. Zhou, H. Cao, K. Gao, J. Shen, Z. Lu, Z. Wu, M. Liu. Modern Phys. Lett. B 37, 35, 2350188 (2023)
- A.N. Nadeev, S.V. Tsybulya, E.Yu. Gerasimov, N.A. Kulikovskaya, L.A. Isupova. J. Structural Chem. 51, 5, 891 (2010)
- P.M. Price, N.D. Browning, D.P. Butt. J. Am. Ceram. Soc. 98, 7, 2248 (2015). https://doi.org/10.1111/jace.13474
- M. Vallet-Regi, J. Gonzalez-Calbet, M.A. Alario-Franco, J.-C. Grenier, P. Hagenmuller. J. Solid State Chem. 55, 3, 25l (1984)
- M.A. Alario-Franco, J.M. Gonzalez-Calbet, M. Vallet-Regi, J.-C. Grenier. J. Solid State Chem. 49, 2, 219 (1983)
- M.A. Alario-Franco, M.J.R. Henche, M. Vallet, J.M.G. Calbet, J.-C. Grenier, A. Wattiaux, P. Hagenmuller. J. Solid State Chem. 46, 1, 23 (1983)
- J.C. Grenier, L. Fourn\`es, M. Pouchard, P. Hagenmuller, S. Komornicki. Mater. Res. Bull. 17, 1, 55 (1982). https://doi.org/10.1016/0025-5408(82)90183-0
- G.A. Sawatzky, F. van der Woude. J. Physique Colloq. 35, C6, 47 (1974)
- V.I. Nikolaev, V.S. Rusakov. Messbauerovskie issledovaniya ferritov. Izd-vo Mosk. Un-ta, M. (1985). 224 p. (in Russian)
- Y. Shin, G. Galli. npj Comput. Mater. 9, 1, 218 (2023). https://doi.org/10.1038/s41524-023-01175-5
- T.C. Gibb. J. Solid State Chem. 74, 1, 176 (1988).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.