Uspenskaya Yu. A.1, Gurin A. S.1, Uchaev M. V.1, Bundakova A. P.1, Muzafarova M. V.1, Mokhov E. N.1, Nagalyuk S. S.1, Soltamov V. A. 1, Baranov P. G.1, Babunts R. A.1, Kilin S. Ya. 2
1Ioffe Institute, St. Petersburg, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: yulia.uspenskaya@mail.ioffe.ru
The successful realization of coherent microwave amplification (maser effect) at room temperature (300 K) based on optically aligned triplet spin sublevels of negatively charged nitrogen-vacancy centers (NV-) in diamond marked a new milestone in the development of solid-state masers. In this paper, we present a comparative analysis of the spin-optical properties of NV- centers in diamond and NV- centers in silicon carbide (SiC) with a reduced content of the magnetic isotope 29Si (I=1/2), which are used to create masers operating at room temperature. The similarity of the optical pumping mechanisms that form the inverse population of the ground triplet state in both systems is demonstrated. The transverse spin relaxation times T2*~1.5 μs for NV--centers in isotopically modified 28SiC significantly exceed the corresponding values for diamond (T2*~0.3 μs). The longitudinal relaxation times are comparable with the requirements for maintaining the population inversion: about 1.5 ms for NV- in diamond and 100 μs for NV- in 28SiC. The combination of the ability to grow large SiC single crystals and the high permissible concentration of active centers opens up prospects for creating a scalable and technologically efficient platform for solid-state masers operating at room temperature. Keywords: maser, electron paramagnetic resonance, diamond, silicon carbide, nitrogen-vacancy defect.
- N. Basov, A. Prokhorov. J. Exp. Theor. Phys. 1, 185 (1955)
- J.P. Gordon, H.J. Zeiger, C.H. Townes. Phys. Rev., 99, 1264 (1955)
- C. Audoin, J. Vanier. J. Phys. E: Sci. Instrum. 9, 697 (1976)
- G. Makhov, C. Kikuchi, J. Lambe, R.W. Terhune. Phys. Rev. 109, 1399-1400 (1958)
- H.E.D. Scovil, G. Feher , H. Seidel. Phys. Rev. 105, 762 (1957)
- R.C. Clauss, J.S. Shell. Ruby masers. In Low-Noise Systems in the Deep Space Network (ed. Reid, M.S.) (Deep Space Communication and Navigation Series, Jet Propulsion Laboratory, Caltech, 2008)
- R. Forward, F. Goodwin, J. Kiefer. "Application of a solid-state ruby maser to an X-band radar system," in WESCON/59 Conference Record (IEEE, 1959), Vol. 3, pp. 119-125
- A. Sigmen. Mazery. --- M., Mir, 1966 (in Russian)
- D.M. Arroo, N.McN. Alford, J.D. Breeze. Appl. Phys. Lett. 119, 140502 (2021);
- A. Barannik, N. Cherpak, A. Kirichenko, Y. Prokopenko, S. Vitusevich, and V. Yakovenko. Int. J. Microwave Wireless Technol. 9, 781-796 (2017)
- G.M. Zverev, Sh.V. Marlov, L.S. Kornienko, A.A. Maienkov, A.Sh. Prokhorov. UFN, 77 61-108 (1962). (in Russian)
- J.H. Pace, D.F. Sampson, J.S. Thorp. Phys. Rev. Lett. 4, 18 (1960)
- H. Hsu, F.K. Tittel. Optical pumping of microwave masers. Proc. IEEE 51, 185-189 (1963)
- M. Oxborrow, J.D. Breeze, N.M. Alford. Nature 488, 353-356 (2012)
- A. Mena, S.K. Mann, A. Cowley-Semple, E. Bryan, S. Heutz, D.R. McCamey, M. Attwood, S.L. Bayliss. Phys. Rev. Lett. 133, 120801 (2024)
- J. Loubser, J. Van Wyk. "Optical spin-polarisation in a triplet state in irradiated and annealed type 1b diamonds", Diamond Res. 1977, 11-14. ≤fteqnstyle=
- H. Kraus, V. Soltamov, D. Riedel, S. VC-7.5ptath, F. Fuchs, A. Sperlich, P. Baranov, V. Dyakonov, G. Astakhov. Nat. Phys. 10, 157-162 (2014)
- V.A. Soltamov, A.A. Soltamova, P.G. Baranov, I.I. Proskuryakov. Phys. Rev. Lett. 108, 226402 (2012)
- A. Jarmola, V.M. Acosta, K. Jensen, S. Chemerisov, D. Budker. Phys. Rev. Lett. 108, 197601 (2012)
- J.D. Breeze, E. Salvadori, J. Sathian, N. McN. Alford1, C.W.M. Kay. Nature 555, 493-496 (2018)
- V.M. Acosta, E. Bauch, M.P. Ledbetter, C. Santori, K.-M.C. Fu, P.E. Barclay, R.G. Beausoleil, H. Linget, J.F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, D. Budker. Phys. Rev. B 80, 115202 (2009)
- C. Kasper, D. Klenkert, Z. Shang, D. Simin, A. Gottscholl, A. Sperlich, H. Kraus, C. Schneider, S. Zhou, M. Trupke, W. Kada, T. Ohshima, V. Dyakonov,1 V. Astakhov. Phys. Rev. Applied 13, 044054 (2020)
- V.A. Soltamov, B.V. Yavkin, A.N. Anisimov, H. Singh, A.P. Bundakova, G.V. Mamin, S.B. Orlinskii, E.N. Mokhov, D. Suter, P.G. Baranov. Phys. Rev. B 103, 195201 (2021)
- D. Simin, H. Kraus, A. Sperlich, T. Ohshima, G.V. Astakhov, V. Dyakonov. Phys. Rev. B 95, 161201(R) (2017)
- A. Gottscholl, M. Wagenhofer, V. Baianov, V. Dyakonov, A. Sperlich. arXiv:2312.08251 (2023)
- C.B. Rodriguez. arXiv:2308.00848 (2023)
- H. Wu, X. Xie, W. Ng, S. Mehanna, Y. Li, M. Attwood, M. Oxborrow. Phys. Rev. Appl. 14, 6, 064017 (2020)
- H. Wu, S. Mirkhanov, W. Ng, M. Oxborrow. Phys. Rev. Lett. 127, 5, 053604 (2020)
- Wern Ng, Yongqiang Wen, M. Attwood; D.C. Jones; M. Oxborrow, N. McN. Alford, D. M. Arroo. Appl. Phys. Lett. 124, 044004 (2024)
- H.J. von Bardeleben, J.L. Cantin, E. Rauls, U. Gerstmann. Phys. Rev. B 92, 064104 (2015)
- Kh. Khazen, H.J. von Bardeleben, S.A. Zargaleh, J.L. Cantin,1 Mu Zhao, W. Gao, T. Biktagirov, U. Gerstmann. Phys. Rev. B 100, 205202 (2019)
- F.F. Murzakhanov, M.A. Sadovnikova, G.V. Mamin, S.S. Nagalyuk, H.J. von Bardeleben, W.G. Schmidt, T. Biktagirov, U. Gerstmann, V.A. Soltamov. J. Appl. Phys. 134, 123906 (2023)
- Patent RF 2523744. Aktivnyi material dlya mazera s opticheskoi nakachkoi i mazer s opticheskoi nakachkoi / P.G. Baranov, R.A. Babunts, A.A. Soltamova, V.A. Soltamov, A.P. Bundakova. Zayavl. 24.08.2012. Opubl. 20.07.2014 (in Russian)
- Yu.A. Vodakov, E.N. Mokhov, M.G. Ramm, A.D. Roenkov. Krist. Tech., 14, 729 (1979)
- E.N. Mokhov, S.S. Nagalyuk, O.P. Kazarova, S.I. Dorozhkin, V.A. Soltamov. Phys. Sol. St. 67, 1, 114-120 (2025)
- F.F. Murzakhanov, D.V. Shurtakova, E.I. Oleynikova, G.V. Mamin, M.A. Sadovnikova, O.P. Kazarova, E.N. Mokhov, M.R. Gafurov, V.A. Soltamov. Appl. Magn. Reson. 55, 1175-1182 (2024)
- B.V. Yavkin, G.V. Mamin, S.B. Orlinskii. J. Magn. Reson. 262, 15 (2016)
- X.F. He, N.B. Manson, P.T.H. Fisk. Phys. Rev. B 47, 8809 (1993)
- L.R. Latypova, I.N. Gracheva, D.V. Shurtakova, F.F. Murzakhanov, M.A. Sadovnikova, G.V. Mamin, M.R. Gafurov. J. Phys. Chem. C 2024, 128, 43, 18559-1856
- T. Biktagirov, W.G. Schmidt, U. Gerstmann. Phys. Rev. Research 2, 022024(R) (2020).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.