Magnetism SiC/Si hybrid structures that are synthesized by the vacancy mechanism of coordinated substitution of atoms
Romanov V. V.
1, Rul N. I.
1,2, Venevtsev I. D.
1, Korolev A. V.
3, Kukushkin S. A.
4, Bagraev N.T.
21Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
4St. Petersburg State University, St. Petersburg, Russia
Email: rul_ni@spbstu.ru, sergey.a.kukushkin@gmail.com
We have investigated magnetic properties of the SiC/Si hybrid structures grown on surfaces of the n- and p-types of silicon by the vacancy mechanism of coordinated substitution of atoms (VMCSA). Magnetization of the samples was measured in SQUID installations at the temperatures 5, 100 and 350 K at the external magnetic field strengths from -25 to 25 kOe and by a Faraday method in the "Faraday Balance" installation at the room temperature in the fields from -11 to 11 kOe. Magnetization field dependences obtained in the experiment were analyzed to show high efficiency of joint use of these methods for interpretation of the obtained results. We managed to find and explain origination of a magnetization paramagnetic component by formation of a superparamagnetic state of vacancies in silicon carbide. We have found oscillations that are periodic by the reverse field and identilled as the De Haas-Van Alphen effect as well as Aharonov-Bohm oscillations that are caused by capturing magnetic-flux quanta to hybrid structure defects. Keywords: magnetization, superparamagnetism, De Haas-Van Alphen, Aharonov-Bohm oscillations, silicon carbide over silicon, silicon vacancies, nanostructures.
- G.L. Harris. Properties of silicon carbide. United Kingdom, IEE, London (1995)
- S.A. Tarasenko, A.V. Poshakinskiy, V.A. Soltamov, E.N. Mokhov, P.G. Baranov, V. Dyakonov, G.V. Astakhov. Phys. Status Solidi (b) 255, 1, 1700258 (2018). DOI: 10.48550/arXiv.1707.05503
- L.M. Soltys, I.F. Mironyuk, I.M. Mykytyn, I.D. Hnylytsia, L.V. Turovsk. Phys. Chem. Solid State 24, 1, 5 (2023). DOI: 10.15330/pcss
- S.P. Masri. Surf. Sci. Rep. 48, 1-4, 1 (2002). DOI: https://doi.org/10.1016/S0167-5729(02)00099-7
- A.S. Grashchenko, S.A. Kukushkin, A.V. Osipov, A.V. Redkov. Catal. Today. 397-399, 8, 375 (2021). DOI: 10.1016/J.CATTOD.2021.08.012
- S.A. Kukushkin, A.V. Osipov. Technical Physics Letters 50, 11, 16 (2024). DOI: 10.61011/TPL.2024.11.59658.20027
- N.I. Rul, V.V. Romanov, A.V. Korolev, S.A. Kukushkin, V.E. Gasumyants. Mater. Phys. Mech. 52, 6, 1 (2024). DOI: 10.18149/MPM.5262024_1
- V.V. Romanov, N.I. Rul, V.E. Gasumyants, I.D. Venevtsev, K.B. Taranets, A.V. Korolev, S.A. Kukushkin, A.V. Osipov, N.T. Bagraev. Mater. Phys. Mech. 53, 1, 159 (2025). DOI: http://dx.doi.org/10.18149/MPM.5312025_1
- R. Uait. Kvantovaya teoriya magnetizma. Moskva: Mir, 1985, 303 s.(in Russian)
- C.P. Bean, J.D. Livingston. J. Appl. Phys. 30, 4, 120 (1959). DOI: 10.1063/1.2185850
- K.M. Herd. UFN. 142, 2, 331 (1984). (in Russian). DOI: https://doi.org/10.3367/UFNr.0142.198402e.0331
- W.J. de Haas, P.M. van Alphen. Proceeding of the Royal Netherlands Academy of Arts and Science. 33, 1106 (1931)
- D. Shoenberg. Magnetic oscillations in metals. Cambridge Univ. Press (1984)
- I.M. Lifshitz, and A.M. Kosevich. Soviet Physics JETP 2, 4, 636 (1956)
- A.M. Kosevich and I.M. Lifshitz, Soviet Physics JETP. 2, 4, 646 (1956)
- Y. Aharonov, D. Bohm. Phys. Rev. 115, 3, 485. (1959). DOI: https://doi.org/10.1103/PhysRev.115.485
- N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, V.V. Romanov, L.E. Klyachkin. A.M. Malyarenko, N.I. Rul. Mater. Phys. Mech. 50, 1, 66 (2022). DOI: http://dx.doi.org/10.18149/MPM.5012022_5
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.