Formation of potassium clusters in electric field on the surface of a tungsten single crystal
Bernatsky D.P.
1, Pavlov V. G.
11Ioffe Institute, St. Petersburg, Russia
Email: bernatskii@ms.ioffe.ru, vpavlov@ms.ioffe.ru
Formation of monatomic (K+) and cluster potassium ions (K2+, K3+, K4+, K5+, K6+) in the process of field desorption from the spherical surface of a tungsten single crystal was detected. The studies were carried out in a field emission microscope, which provides for measuring the mass of ions desorbed by an electric field using time-of-flight mass analysis. The electric field strength required for potassium ions desorption corresponded to the calculated values obtained in the image force model for field desorption of alkali metals. For all detected potassium cluster ions, there is a minimum in the dependence of the number of desorbed ions on the electric field strength. For monatomic ions, such a minimum is not observed. The discovered patterns are explained by a shift in cluster desorption zones from the center of the sample to the periphery with increasing voltage. Keywords: adsorption, field desorption, microscopy, ions, mass spectrometry.
- Nano Tools and Devices for Enhanced Renewable Energy / Eds S. Devasahayam, C.M. Hussain. Elsevier, Amsterdam (2021). 598 p
- Luminescent Metal Nanoclasters. Synthesis, Characterization, and Applications / Eds S. Thomas, K. Joseph, S. Appukuttan, M.S. Mathew. Elsevier, Amsterdam (2022). 704 p
- L.A. Bol'shov, A.P. Napartovich, A.G. Naumovets, A.G. Fedorus. Sov. Phys. Uspekhi 20, 5, 432 (1977)
- A.G. Naumovets. Physica A 357, 2, 189 (2005)
- S.G. Davison, K.W. Sulston. Green-Function Theory of Chemisorption. Springer, Berlin (2006). 211 p
- S.Yu. Davydov, A.A. Lebedev, O.V. Posrednik. Elementarnoye vvedeniye v teoriyu nanosistem. Lan', SPb (2022). 192 s. (in Russian). ISBN 978-5-8114-1565-6
- S.Yu. Davydov, A.V. Zubov. Phys. Solid State 62, 8, 1469 (2020)
- D.P. Bernatskii, V.G. Pavlov. FTT 66, 7, 1208 (2024). (in Russian)
- D.P. Bernatskii, V.G. Pavlov. Bull. RAS. Phys. 73, 5, 673 (2009)
- Y. Suchorski. Field Ion and Field Desorption Microscopy: Principles and Applications. Springer-Verlag, Berlin (2015). 272 p
- E.W. Muller, T.T. Tsong. Field Ion Microscopy, Field Ionization and Field Evaporation. Pergamon Press, Oxford, N.Y. (1973). 139 p
- D.P. Bernatskii, V.G. Pavlov. Tech. Phys. Lett. 44, 2, 178 (2018)
- P.J. Foster, R.E. Leckenby, E.J. Robbins. J. Phys. B: Atom. Mol. Phys. 2, 4, 478 (1969)
- A.N. Dobretsov, M.V. Gomoyunova. Emissionnaya elektronika. Nauka, M., (1966). 559 p. (in Russian)
- Field Ion Microscopy / Eds J.J. Hren, S. Rangathan. Plenium Press, N.Y. (1968)
- E.W. Muller, T.T. Tsong. Field Ion Microscopy. Elsevier, N.Y. (1969)
- J.A. Panitz. Progress. Surf. Sci. 8, 6, 219 (1978)
- E.W. Muller. Adv. Electron Phys. 13, 83 (1960)
- E.V. Klimenko, A.G. Naumovets. FTT 13, 1, 33 (1971). (in Russian)
- A. Dalgarno. Adv. Phys. 11, 44, 281 (1962)
- V.N. Shrednik, E.V. Snezhko. FTT 6, 11, 3409 (1964). (in Russian)
- R. Schmidt, J. Gomer. J. Chem. Phys. 42, 10, 3573 (1965)
- O.M. Braun, V.K. Medvedev. Sov. Phys. Uspekhi 32, 4, 328 (1989).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.