Dielectric and switching properties of ferroelectric superlattices and multilayers
Sidorkin A.S1, Gagou Y.2, Saint-Gregoire P.3, Nesterenko L.P.1, Kalgin A.V.1,4
1Voronezh State University, Voronezh, Russia
2Universite de Picardie Jules Verne, Amiens, France
3University of Nimes, Nimes, France
4Voronezh State Technical University, Voronezh, Russia
Email: kalgin_alexandr@mail.ru
The study has investigated the dielectric and switching properties of the ferroelectric superlattices and multilayer formations with a barium-titanate-type structure of separate layers. The properties were studied in detail on the BaTiO3/BaZrO3 ferroelectric superlattices (16 pairs of the layers), which demonstrate a ferroelectric phase transition at the temperature of 393 oC, which significantly exceeds the temperature of the phase transition in the bulk and the thin-film BaTiO3. Other objects of research were multilayer formations strontium titanate/lead titanate/strontium titanate, where materials of the layers have similar temperatures of the transition into the ferroelectric state and similar parameters of a lattice cell. We have identified differences in a behavior of the properties of the BaTiO3/BaZrO3 superlattices and the SrTiO3/PbTiO3/SrTiO3 multilayer formations, which are related to different intensity of mechanical and electric interactions of the layers that make up these structures. Keywords: ferroelectric superlattice, ferroelectric multilayer formation, dielectric permittivity, switching current, mechanical stress, phase transition.
- Fizika segnetoelektrikov: sovremennyi vzglyad / Pod red. K.M. Rabe, Ch.G. Ana, Zh.-M. Triskona. Laboratoriya znanii, M. (2025). 443 s. (in Russian)
- J.F. Scott. ISRN Mater. Sci. 2013, 1 (2013)
- T.M. Shaw, S. Trolier-McKinstry, P.C. McIntyre. Annu. Rev. Mater. Sci. 30, 263 (2000)
- G. Catalan, J. Seidel, R. Ramesh, J.F. Scott. Rev. Mod. Phys. 84, 119 (2012)
- M. Dawber, K. Rabe, J. Scott. Rev. Mod. Phys. 77, 4, 1083 (2005)
- G. Rijnders, D.H. Blank. Nature 433, 369 (2005)
- Yu.I. Yuzyuk, R.A. Sakhovoy, O.A. Maslova, V.B. Shirokov, I.N. Zakharchenko, J. Belhadi, M. El Marssi. J. Appl. Phys. 116, 184102 (2014)
- V.A. Stephanovich, I.A. Lukyanchuk, M.G. Karkut. Phys. Rev. Lett. 94, 47601 (2005)
- O.A. Maslova, Yu.I. Yuzyuk, N. Ortega, A. Kumar, R. Katiyar, S.A. Barannikova. Mat. Res. 22, 1, e20180389 (2018)
- K.-G. Lim, Kh.-H. Chew, L.-H. Ong, M. Iwata. Solid State Phenomena 232, 169 (2015)
- J. Shen, Y.-Q. Ma. Phys. Rev. B 61, 21, 14279 (2000)
- M. Sepliarsky, S.R. Phillpot, D. Wolf, M.G. Stachiotti, R.L. Migoni. Phys. Rev. B 64, 060101 (2001)
- B.M. Darinskii, A.S. Sidorkin, A.S. Sigov. Nanocomposites 7, 1, 154 (2021)
- M. El Marssi, Y. Gagou, J. Belhadi, F. De Guerville, Yu.I. Yuzyuk, I.P. Raevski. J. Appl. Phys. 108, 084104 (2010)
- A. Sidorkin, L. Nesterenko, Y. Gagou, P. Saint-Gregoire, E. Vorotnikov, N. Popravko. Materials 11, 1436 (2018)
- V.G. Koukhar, N.A. Pertsev, R. Waser. Phys. Rev. B 64, 214103 (2001)
- A.I. Lebedev. Phys. Solid State 52, 1351 (2010)
- Y. Zhang, M. Liu, J. Wang, T. Shimada, T. Kitamura. J. Appl. Phys. 115, 224107 (2014)
- A.S. Sidorkin, L.P. Nesterenko, Y. Gagou, P. Saint-Gregoire, A.Yu. Pakhomov, N.G. Popravko. Sci. Rep. 9, 18948 (2019)
- T. Choi, J. Lee. Ferroelectrics 328, 41 (2005)
- T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto, S. Wada. J. Appl. Phys. 91, 4, 2284 (2002)
- S.M. Nakhmanson, K.M. Rabe, D. Vanderbilt. Phys. Rev. B 73, 060101 (2006)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.