Physics of the Solid State
Volumes and Issues
Study of surface properties and melting point of rhodium at different pressures
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
An analytical method is proposed for calculating the lattice and surface properties of rhodium (Rh) at any (corresponding to the solid phase) values of temperature T and pressure P. Within the framework of this method, the parameters of the pairwise interatomic Mie-Lennard-Jones potential for Rh are determined in a self-consistent manner. The obtained potential parameters were tested by calculating the equation of state and baric dependences of the elastic modulus (BT) and the thermal expansion coefficient. Using this analytical method, the surface properties of rhodium were studied for the first time: specific surface energy (σ) and derivatives of σ in temperature and pressure: σ'(P)_T=(dσ/d P)T. Both baric dependences of these functions along three isotherms: 300, 1000, 2000 K, and temperature dependences along three isobars: 0, 50, 100 GPa were obtained. Estimates for the fragmentation point of rhodium at different temperatures are obtained. It is shown that the function σ'(P) for rhodium depends linearly on the value of the pressure derivative of the elastic modulus B'(P)=(d B_T/d P)T. The dependences of Poisson's ratio on pressure and temperature have been studied. The baric dependence of the Rh melting point is calculated. The influence of the electronic subsystem on the obtained dependencies is studied. Keywords: rhodium, equation of state, elastic modulus, thermal expansion, surface energy, Debye temperature, Groneisen parameter, melting point.
  1. H.M. Strong, F.P. Bundy. Phys. Rev. 115, 2, 278 (1959). https://doi.org/10.1103/PhysRev.115.278
  2. S. Marsh. LASL Shock Hugoniot Data, v. 5. University California Press, Berkeley (1980)
  3. E. Walker, J. Ashkenazi, M. Dacorogna. Phys. Rev. B 24, 4, 2254 (1981). https://doi.org/10.1103/physrevb.24.2254
  4. L.V. Al'tshuler, S.E. Brusnikin, E.A. Kuz'menkov. J. Appl. Mech. Tech. Phys. 28, 1, 129 (1987). https://doi.org/10.1007/BF00918785
  5. J.W. Arblaster. Platinum Metals Rev. 41, 4, 184 (1997). https: //citeseerx.ist.psu.edu/document?repid=rep1\&type= pdf\&doi=f01e89265db07a7910e2f79b9d2fe85544ae5b56
  6. G. Pan, C. Hu, P. Zhou, F. Wang, Z. Zheng, B. Liang. J. Mater. Res. 29, 12, 1334 (2014). https://doi.org/10.1557/jmr.2014.141
  7. P. Kumar, N.K. Bhatt, P.R. Vyas, V.B. Gohel. Eur. Phys. J. B 89, 10, 219 (2016). https://doi.org/10.1140/epjb/e2016-70367-0
  8. K.V. Yusenko, S. Khandarkhaeva, T. Fedotenko, A. Pakhomova, S.A. Gromilov, L. Dubrovinsky, N. Dubrovinskaia. J. Alloys. Compd. 788, 212 (2019). https://doi.org/10.1016/j.jallcom.2019.02.206
  9. N.A. Smirnov. J. Appl. Phys. 134, 2, 025901 (2023). https://doi.org/10.1063/5.0158737
  10. M. Frost, D. Smith, E.E. McBride, J.S. Smith, S.H. Glenzer. J. Appl. Phys. 134, 3, 035901 (2023). https://doi.org/10.1063/5.0161038
  11. B. Thakur, X. Gong, A. Dal Corso. AIP Adv. 14, 4, 045229 (2024). https://doi.org/10.1063/5.0203098
  12. J.D. McHardy, C.V. Storm, M.J. Duff, C.M. Lonsdale, G.A. Woolman, M.I. McMahon, N. Giordano, S.G. MacLeod. Phys. Rev. B 109, 9, 094113 (2024). https://doi.org/10.1103/PhysRevB.109.094113
  13. J.L. Rodrigo-Ramon, S. Anzellini, C. Cazorla, P. Botella, A. Garcia-Beamud, J. Sanchez-Martin, G. Garbarino, A.D. Rosa, S. Gallego-Parra, D. Errandonea. Sci. Rep. 14, 1, 26634 (2024). https://doi.org/10.1038/s41598-024-78006-0
  14. N.T. Tam, L.T. Lam, H.K. Hieu. Phys. Lett. A 547, 130450 (2025). https://doi.org/10.1016/j.physleta.2025.130450
  15. M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021). https://doi.org/10.1134/S1063783421090250
  16. M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). https://doi.org/10.21883/PSS.2022.07.54579.319
  17. E.A. Moelwyn-Hughes. Physical Chemistry, Pergamon Press, London (1961). 1333 p
  18. L.A. Girifalco. Statistical Physics of Materials. J. Wiley \& Sons Ltd., New York (1973). 346 p
  19. Y. Kraftmakher. Phys. Rep. 299, 2--3, 79 (1998). https://doi.org/10.1016/S0370-1573(97)00082-3
  20. M.N. Magomedov. Tech. Phys 68, 2, 209 (2023). https://doi.org/10.21883/TP.2023.02.55474.190-22
  21. M. Matsui. J. Phys: Conf. Ser. 215, 1, 012197 (2010). https://doi.org/10.1088/1742-6596/215/1/012197
  22. X. Huang, F. Li, Q. Zhou, Y. Meng, K.D. Litasov, X. Wang, B. Liu, T. Cui. Sci. Rep. 6, 19923 (2016). https://doi.org/10.1038/srep19923
  23. A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. JETP 124, 3, 469 (2017). https://doi.org/10.1134/S1063776117030049
  24. D.K. Belashchenko. Phys. --- Uspekhi 63, 12, 1161 (2020). https://doi.org/10.3367/UFNe.2020.01.038761
  25. M.N. Magomedov. Phys. Solid State 65, 5, 708 (2023). https://doi.org/10.21883/PSS.2023.05.56040.46
  26. P. Janthon, S.(A) Luo, S.M. Kozlov, F. Vines, J. Limtrakul, D.G. Truhlar, F. Illas. J. Chemical Theory. Comput. 10, 9, 3832 (2014). https://doi.org/10.1021/ct500532v
  27. J. Park, B.D. Yu, S. Hong. Current Appl. Phys. 15, 8, 885 (2015). https://doi.org/10.1016/j.cap.2015.03.028
  28. M.N. Magomedov. Solid State Commun. 397, 115833 (2025). https://doi.org/10.1016/j.ssc.2025.115833
  29. D.K. Belashchenko. Russ. J. Phys. Chem. A 94, 10, 1971 (2020). https://doi.org/10.1134/S0036024420100064
  30. W.R. Tyson. Canadian Metallurgical Quarterly 14, 4, 307 (1975). https://doi.org/10.1179/000844375795049997
  31. W.R. Tyson, W.A. Miller. Surf. Sci. 62, 1, 267 (1977). https://doi.org/10.1016/0039-6028(77)90442-3
  32. M. Methfessel, D. Hennig, M. Scheffler. Phys. Rev. B 46, 8, 4816 (1992). https://doi.org/10.1103/PhysRevB.46.4816
  33. A. Eichler, J. Hafner, J. Furthmuller, G. Kresse. Surf. Sci. 346, 1--3, 300 (1996). https://doi.org/10.1016/0039-6028(95)00906-X
  34. J. Xie, M. Scheffler. Phys. Rev. B 57, 8, 4768 (1998). https://doi.org/10.1103/PhysRevB.57.4768
  35. I. Galanakis, N. Papanikolaou, P.H. Dederichs. Surf. Sci. 511, 1--3, 1 (2002). https://doi.org/10.1016/S0039-6028(02)01547-9
  36. Q. Jiang, H.M. Lu. Surf. Sci. Rep. 63, 10, 427 (2008). https://doi.org/10.1016/j.surfrep.2008.07.001
  37. F. Aqra, A. Ayyad. Appl. Surf. Sci. 257, 15, 6372 (2011). https://doi.org/10.1016/j.apsusc.2011.01.123
  38. J. Wang, S.Q. Wang. Surf. Sci. 630, 216 (2014). https://doi.org/10.1016/j.susc.2014.08.017
  39. A. Patra, J.E. Bates, J. Sun, J.P. Perdew. Proceed. National Academy of Sci. 114, 44, E9188 (2017). https://doi.org/10.1073/pnas.1713320114
  40. J.-Y. Lee, M.P.J. Punkkinen, S. Schonecker, Z. Nabi, K. Kadas, V. Zolyomi, Y.M. Koo, Q.-M. Hu, R. Ahuja, B. Johansson, J. Kollar, L. Vitos, S.K. Kwon. Surf. Sci. 674, 51 (2018). https://doi.org/10.1016/j.susc.2018.03.008
  41. A. Seoane, X.M. Bai. Surfaces. Interfaces 45, 103841 (2024). https://doi.org/10.1016/j.surfin.2023.103841
  42. A.A. Oni-Ojo, E.O. Aiyohuyin. J. Nigerian Assoc. Math. Phys. 67, 1, 79 (2024). https://doi.org/10.60787/jnamp-v67i1-347
  43. S.N. Zhevnenko, I.S. Petrov, D. Scheiber, V.I. Razumovskiy. Acta Materialia 205, 116565 (2021). https://doi.org/10.1016/j.actamat.2020.116565
  44. M.N. Magomedov. Phys. Solid State 67, 2, 428 (2025). https://doi.org/10.61011/PSS.2025.02.60685.318
  45. M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron \& Neutron Technique 6, 1, 86 (2012). https://doi.org/10.1134/S1027451012010132
  46. E.F. Pichugin. Izvestiya Vysshikh Uchebnykh Zavedenii: Fizika 6, 77 (1962). (In Russ.)
  47. M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). https://doi.org/10.1134/S1063783420120197
  48. J. Merker, D. Lupton, M. Topfer, H. Knake. Platinum Metals Rev. 45, 2, 74 (2001)
  49. C. Kittel. Introduction to Solid State Physics. J. Wiley \& Sons Ltd., NY (1976)
  50. V.N. Zharkov, V.A. Kalinin. Equations of State for Solids at High Pressures and Temperatures. Consultants Bureau, N.Y. (1971)
  51. I.V. Lomonosov, S.V. Fortova. High Temperature 55, 4, 585 (2017). https://doi.org/10.1134/S0018151X17040113
  52. G.K. White, A.T. Pawlowicz. J. Low Temperature Phys. 2, 5/6, 631 (1970). https://doi.org/10.1007/BF00628279
  53. G.T. Furukawa, M.L. Reilly, J.S. Gallagher. J. Phys. Chem. Ref. Data 3, 1, 163 (1974). https://doi.org/10.1063/1.3253137

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru