Study of surface properties and melting point of rhodium at different pressures
Magomedov M. N.
11Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
An analytical method is proposed for calculating the lattice and surface properties of rhodium (Rh) at any (corresponding to the solid phase) values of temperature T and pressure P. Within the framework of this method, the parameters of the pairwise interatomic Mie-Lennard-Jones potential for Rh are determined in a self-consistent manner. The obtained potential parameters were tested by calculating the equation of state and baric dependences of the elastic modulus (BT) and the thermal expansion coefficient. Using this analytical method, the surface properties of rhodium were studied for the first time: specific surface energy (σ) and derivatives of σ in temperature and pressure: σ'(P)_T=(dσ/d P)T. Both baric dependences of these functions along three isotherms: 300, 1000, 2000 K, and temperature dependences along three isobars: 0, 50, 100 GPa were obtained. Estimates for the fragmentation point of rhodium at different temperatures are obtained. It is shown that the function σ'(P) for rhodium depends linearly on the value of the pressure derivative of the elastic modulus B'(P)=(d B_T/d P)T. The dependences of Poisson's ratio on pressure and temperature have been studied. The baric dependence of the Rh melting point is calculated. The influence of the electronic subsystem on the obtained dependencies is studied. Keywords: rhodium, equation of state, elastic modulus, thermal expansion, surface energy, Debye temperature, Groneisen parameter, melting point.
- H.M. Strong, F.P. Bundy. Phys. Rev. 115, 2, 278 (1959). https://doi.org/10.1103/PhysRev.115.278
- S. Marsh. LASL Shock Hugoniot Data, v. 5. University California Press, Berkeley (1980)
- E. Walker, J. Ashkenazi, M. Dacorogna. Phys. Rev. B 24, 4, 2254 (1981). https://doi.org/10.1103/physrevb.24.2254
- L.V. Al'tshuler, S.E. Brusnikin, E.A. Kuz'menkov. J. Appl. Mech. Tech. Phys. 28, 1, 129 (1987). https://doi.org/10.1007/BF00918785
- J.W. Arblaster. Platinum Metals Rev. 41, 4, 184 (1997). https: //citeseerx.ist.psu.edu/document?repid=rep1\&type= pdf\&doi=f01e89265db07a7910e2f79b9d2fe85544ae5b56
- G. Pan, C. Hu, P. Zhou, F. Wang, Z. Zheng, B. Liang. J. Mater. Res. 29, 12, 1334 (2014). https://doi.org/10.1557/jmr.2014.141
- P. Kumar, N.K. Bhatt, P.R. Vyas, V.B. Gohel. Eur. Phys. J. B 89, 10, 219 (2016). https://doi.org/10.1140/epjb/e2016-70367-0
- K.V. Yusenko, S. Khandarkhaeva, T. Fedotenko, A. Pakhomova, S.A. Gromilov, L. Dubrovinsky, N. Dubrovinskaia. J. Alloys. Compd. 788, 212 (2019). https://doi.org/10.1016/j.jallcom.2019.02.206
- N.A. Smirnov. J. Appl. Phys. 134, 2, 025901 (2023). https://doi.org/10.1063/5.0158737
- M. Frost, D. Smith, E.E. McBride, J.S. Smith, S.H. Glenzer. J. Appl. Phys. 134, 3, 035901 (2023). https://doi.org/10.1063/5.0161038
- B. Thakur, X. Gong, A. Dal Corso. AIP Adv. 14, 4, 045229 (2024). https://doi.org/10.1063/5.0203098
- J.D. McHardy, C.V. Storm, M.J. Duff, C.M. Lonsdale, G.A. Woolman, M.I. McMahon, N. Giordano, S.G. MacLeod. Phys. Rev. B 109, 9, 094113 (2024). https://doi.org/10.1103/PhysRevB.109.094113
- J.L. Rodrigo-Ramon, S. Anzellini, C. Cazorla, P. Botella, A. Garcia-Beamud, J. Sanchez-Martin, G. Garbarino, A.D. Rosa, S. Gallego-Parra, D. Errandonea. Sci. Rep. 14, 1, 26634 (2024). https://doi.org/10.1038/s41598-024-78006-0
- N.T. Tam, L.T. Lam, H.K. Hieu. Phys. Lett. A 547, 130450 (2025). https://doi.org/10.1016/j.physleta.2025.130450
- M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021). https://doi.org/10.1134/S1063783421090250
- M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). https://doi.org/10.21883/PSS.2022.07.54579.319
- E.A. Moelwyn-Hughes. Physical Chemistry, Pergamon Press, London (1961). 1333 p
- L.A. Girifalco. Statistical Physics of Materials. J. Wiley \& Sons Ltd., New York (1973). 346 p
- Y. Kraftmakher. Phys. Rep. 299, 2--3, 79 (1998). https://doi.org/10.1016/S0370-1573(97)00082-3
- M.N. Magomedov. Tech. Phys 68, 2, 209 (2023). https://doi.org/10.21883/TP.2023.02.55474.190-22
- M. Matsui. J. Phys: Conf. Ser. 215, 1, 012197 (2010). https://doi.org/10.1088/1742-6596/215/1/012197
- X. Huang, F. Li, Q. Zhou, Y. Meng, K.D. Litasov, X. Wang, B. Liu, T. Cui. Sci. Rep. 6, 19923 (2016). https://doi.org/10.1038/srep19923
- A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. JETP 124, 3, 469 (2017). https://doi.org/10.1134/S1063776117030049
- D.K. Belashchenko. Phys. --- Uspekhi 63, 12, 1161 (2020). https://doi.org/10.3367/UFNe.2020.01.038761
- M.N. Magomedov. Phys. Solid State 65, 5, 708 (2023). https://doi.org/10.21883/PSS.2023.05.56040.46
- P. Janthon, S.(A) Luo, S.M. Kozlov, F. Vines, J. Limtrakul, D.G. Truhlar, F. Illas. J. Chemical Theory. Comput. 10, 9, 3832 (2014). https://doi.org/10.1021/ct500532v
- J. Park, B.D. Yu, S. Hong. Current Appl. Phys. 15, 8, 885 (2015). https://doi.org/10.1016/j.cap.2015.03.028
- M.N. Magomedov. Solid State Commun. 397, 115833 (2025). https://doi.org/10.1016/j.ssc.2025.115833
- D.K. Belashchenko. Russ. J. Phys. Chem. A 94, 10, 1971 (2020). https://doi.org/10.1134/S0036024420100064
- W.R. Tyson. Canadian Metallurgical Quarterly 14, 4, 307 (1975). https://doi.org/10.1179/000844375795049997
- W.R. Tyson, W.A. Miller. Surf. Sci. 62, 1, 267 (1977). https://doi.org/10.1016/0039-6028(77)90442-3
- M. Methfessel, D. Hennig, M. Scheffler. Phys. Rev. B 46, 8, 4816 (1992). https://doi.org/10.1103/PhysRevB.46.4816
- A. Eichler, J. Hafner, J. Furthmuller, G. Kresse. Surf. Sci. 346, 1--3, 300 (1996). https://doi.org/10.1016/0039-6028(95)00906-X
- J. Xie, M. Scheffler. Phys. Rev. B 57, 8, 4768 (1998). https://doi.org/10.1103/PhysRevB.57.4768
- I. Galanakis, N. Papanikolaou, P.H. Dederichs. Surf. Sci. 511, 1--3, 1 (2002). https://doi.org/10.1016/S0039-6028(02)01547-9
- Q. Jiang, H.M. Lu. Surf. Sci. Rep. 63, 10, 427 (2008). https://doi.org/10.1016/j.surfrep.2008.07.001
- F. Aqra, A. Ayyad. Appl. Surf. Sci. 257, 15, 6372 (2011). https://doi.org/10.1016/j.apsusc.2011.01.123
- J. Wang, S.Q. Wang. Surf. Sci. 630, 216 (2014). https://doi.org/10.1016/j.susc.2014.08.017
- A. Patra, J.E. Bates, J. Sun, J.P. Perdew. Proceed. National Academy of Sci. 114, 44, E9188 (2017). https://doi.org/10.1073/pnas.1713320114
- J.-Y. Lee, M.P.J. Punkkinen, S. Schonecker, Z. Nabi, K. Kadas, V. Zolyomi, Y.M. Koo, Q.-M. Hu, R. Ahuja, B. Johansson, J. Kollar, L. Vitos, S.K. Kwon. Surf. Sci. 674, 51 (2018). https://doi.org/10.1016/j.susc.2018.03.008
- A. Seoane, X.M. Bai. Surfaces. Interfaces 45, 103841 (2024). https://doi.org/10.1016/j.surfin.2023.103841
- A.A. Oni-Ojo, E.O. Aiyohuyin. J. Nigerian Assoc. Math. Phys. 67, 1, 79 (2024). https://doi.org/10.60787/jnamp-v67i1-347
- S.N. Zhevnenko, I.S. Petrov, D. Scheiber, V.I. Razumovskiy. Acta Materialia 205, 116565 (2021). https://doi.org/10.1016/j.actamat.2020.116565
- M.N. Magomedov. Phys. Solid State 67, 2, 428 (2025). https://doi.org/10.61011/PSS.2025.02.60685.318
- M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron \& Neutron Technique 6, 1, 86 (2012). https://doi.org/10.1134/S1027451012010132
- E.F. Pichugin. Izvestiya Vysshikh Uchebnykh Zavedenii: Fizika 6, 77 (1962). (In Russ.)
- M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). https://doi.org/10.1134/S1063783420120197
- J. Merker, D. Lupton, M. Topfer, H. Knake. Platinum Metals Rev. 45, 2, 74 (2001)
- C. Kittel. Introduction to Solid State Physics. J. Wiley \& Sons Ltd., NY (1976)
- V.N. Zharkov, V.A. Kalinin. Equations of State for Solids at High Pressures and Temperatures. Consultants Bureau, N.Y. (1971)
- I.V. Lomonosov, S.V. Fortova. High Temperature 55, 4, 585 (2017). https://doi.org/10.1134/S0018151X17040113
- G.K. White, A.T. Pawlowicz. J. Low Temperature Phys. 2, 5/6, 631 (1970). https://doi.org/10.1007/BF00628279
- G.T. Furukawa, M.L. Reilly, J.S. Gallagher. J. Phys. Chem. Ref. Data 3, 1, 163 (1974). https://doi.org/10.1063/1.3253137
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.