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An analytical method is proposed for calculating the lattice and surface properties of rhodium (Rh) at any
(corresponding to the solid phase) values of temperature T and pressure P. Within the framework of this method,
the parameters of the pairwise interatomic Mie—Lennard-Jones potential for Rh are determined in a self-consistent
manner. The obtained potential parameters were tested by calculating the equation of state and baric dependences of
the elastic modulus (B7) and the thermal expansion coefficient. Using this analytical method, the surface properties
of thodium were studied for the first time: specific surface energy (o) and derivatives of o in temperature and
pressure: ¢'(P)r = (36/dP)r. Both baric dependences of these functions along three isotherms: 300, 1000,
2000K, and temperature dependences along three isobars: 0, 50, 100 GPa were obtained. Estimates for the
fragmentation point of rhodium at different temperatures are obtained. It is shown that the function ¢’ (P) for
rhodium depends linearly on the value of the pressure derivative of the elastic modulus B'(P) = (3B7/dP)r. The
dependences of Poisson’s ratio on pressure and temperature have been studied. The baric dependence of the Rh
melting point is calculated. The influence of the electronic subsystem on the obtained dependencies is studied.
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1. Introduction

Rhodium (Rh) is one of the six transition metal elements
of the ,platinum group” (rhutenium, rhodium, palladium,
osmium, iridium, platinum), which have similar physical
and chemical properties. Rhodium was discovered by the
English scientist William Hyde Wollaston in 1803.Thanks to
its corrosion resistance, high melting temperature (2236 K),
low electrical resistance, high reflectivity, structural sta-
bility and catalytic properties, rhodium is widely applied
in various fields of science and engineering. Unique
properties of rhodium have been studied for a long
time both experimentally and theoretically [1-13]. At
the same time, due to difficulties of obtaining rhodium
and removing impurities from it, some of its properties
are either experimentally understudied or not studied at
all. The rhodium properties were theoretically studied by
methods of computer simulation as well. However, recently
performed calculations both of the equations of state and
baric dependences of the various properties of rhodium
have shown contradictory results [9-14]. Some properties
of rhodium are unstudied even theoretically. For example,
the literature has no data about a dependence of a specific
surface energy of rhodium on neither the temperature 7' nor
the pressure P. At the same time, increasing use of rhodium
in catalytic converters as well as in metalorganic chemistry
requires detailed investigation of the surface properties of

rhodium at the various P—T-conditions. At this, whereas
the equation of state, an elastic modulus and thermal
expansion of solid rthodium are recently studied in detail [8-
13], but the baric dependence of the melting point (7,(P))
for rhodium is understudied. Only one 1959’s experimental
study by HM. Strong and F.P. Bundy [1] for investigating the
dependence Ty, (P) of rthodium. Two theoretical studies for
investigating the dependence T;,(P) for thodium have been
recently performed: using the Full-Potential Linear Muffin-
Tin Orbital (FM-LMTO) method of computer simulation
in [9] and the statistical moment method (SMM) in [14]. In
this regard, an analytical method (i.e. without computer
simulation and artificial intelligence), which is presented
in [15-17], was taken in the present study to calculate the
equation of state of rhodium and the baric dependences of
its lattice and surface properties from unified positions. The
same method was also taken to study the baric dependence
of the Rh melting point.

2. Calculation method

Our used analytical method of calculation of the single-
component crystal was presented in detail in [15-17]. In
order to describe pairwise interatomic interaction, this
method uses a four-parameter Mie—Lennard-Jones potential,
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which is expressed as follows:

ORI

where D and ro — the depth and the coordinate of the
potential minimum, b > a > 1 — numerical parameters,
r — the distance between atom centers.

Using the ,,only nearest-neighbor interaction approxima-
tion and applying the Einstein crystal model for the oscilla-
tion spectrum, the following expressions were obtained for
specific (per unit area) surface energy of the facet (100) of
the macrocrystal (o), its isochoric and isobaric derivatives
with respect to the temperature and the derivative of o with
respect to the specific area in the Refs. [15,16]:
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Here, k, — the first coordination number, R = r¢/c —
the relative linear density of the crystal, ¢ = (6k, v/m)/? —
the distance between the nearest-atom centers, k, —
the structure packing index, v =V /N — the specific

volume, V and N — the volume and the number of
the crystal atoms, @ = 7/(6k,), kg = 1.3807 - 10~ J/K —
the Boltzmann constant, ©r — the Einstein tempera-

ture, which is related to the Debye temperature by the
relationship [17,18] © = (4/3)@g, y = —(0In®/dnv)r
and g = (dIny/d1nv)r — the first and second Groneisen
parameters, &, = (3 1Inv/9T)p — the coefficient of thermal
volume expansion, ¥ — the area of the system surface,

URR) = %’
-] 2
D)= ity e = (F)
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We can easily see that when 7 — 0K the functions
of (3) and (4) tend to zero at any value of the density R,
which complies with the third law of thermodynamics.
The formulas for calculating the Debye temperature ©
and the Griineisen parameters, equation of state P(v, T),
c(P,T), the thermal expansion coefficient a,(P,T) and
other properties of the crystal within the framework of this
method are described in our studies [15,16].

The obtained expressions (2)—(5) make it possible to
calculate the dependence of the surface properties on
the normalized volume v/vg = (c/r¢)®> =R~ and the
temperature for the single-component crystal with a given
structure (i.e. for given values of k, and kp), if the
parameters of the interatomic potential (1) are known. Note
that the expressions (2)—(5) do not take into account either
vacancies or self-diffusion of atoms, because, as shown
in [19,20], their influence becomes negligible when the
crystal is compressed. Here, as well as in [15,16,20], the
contribution by the electron subsystem to the thermody-
namic parameters is not taken into account, because the
potential (1) describes the pairwise interaction of electrically
neutral atoms. In addition, as shown in the Refs. [21-24],,
the errors that arise in the lattice properties calculation due
to exclusion of the electron subsystem from consideration
are negligibly small. For example, as indicated in [21],
for gold the contribution by the electron subsystem to
the pressure is 0.01 and 0.5GPa at 1000 and 5000K,
respectively. This contribution is much smaller than the
error in pressure measurements at these temperatures.

In the Ref [25] we have proposed a method for
calculating the dependence T, (P), in which the dependence
Tm(P) is calculated by the formula

Tia(P) = T (P, Tn(0)) exp [—% @y (P, Tn(0))

X [T (P, Tin(0)) — Tm(O)H, (6)

where T,,(0) — the crystal melting point at P =0,
a, (P, T(0)) — the thermal expansion coefficient at the
pressure P, which is calculated along the isotherm T;,(0),

The function f,(yw) appears in (7) due to taking into
account quantum effects and is written as

fy (yw) . 2[1 - exp(—yw)]

B % 30
ywll +exp(—yw)]’

YW= T g

This method was tested in Ref. [25] when calculating
the dependence T,(P) for crystals of gold, platinum and
niobium, and it showed good results.
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Figure 1. FCC-Rh equation of state. The solid lines mark our calculations at 300 (lower), 1000 (middle), 2000 K (upper). The dashdotted
lines mark the calculations of the isotherms 301 (a) and 1999K (b) from the Ref. [11]: with one dot for the PBE computer simulation
method and with two dots for the LDA method. @) — The symbols mark the results of the experimental studies at 300 K: [2] — the solid
triangles, [8] — the solid circles, [12] — the solid squares. b) Our calculations of the isotherms 1000 and 2000K (the solid lines) and
calculations of the isotherm 1999 K from [11]: the top is for PBE, and the bottom is for LDA.

3. Calculation results

3.1. Determination of the interatomic potential
parameters

It is known that rhodium (m(Rh) = 102.906 am.u.) has
face-centered cubic (FCC) structure (k, = 12, k, = 0.7405)
and does not experience polymorphous phase transitions
up to 1000GPa=1TPa [9]. The Rh melting point at
P=0is T,(P =0)=2236 £ 3K [5]. The parameters
of the pair interatomic potential (1) for FCC-Rh were
initially determined by us with the use of a self-consistency
method that is described in the Ref [15]. At the same
time, the values of r¢ and specific sublimation energy Lo
were taken from the Ref [26]. The index 00 means that
this value is related to P =0 and 7 = 0K. By varying
the values of ©g and pg, in the Ref [15] we have
determined the potential degrees b and a by fitting values
of the thermal expansion coefficient @, and the isothermal
elastic modulus By = —v(dP/dv)r (that are calculated
when P =0 and 7 = 300K) into the experimental data).
However, the values of ro, D, b and a, which are obtained
in this way for FCC-Rh, did not allow obtaining a good
dependence for the equation of state P(v, T'). Therefore, a
new method of determination of the interatomic potential
parameters (1) was used in the present study. The value
of ro was corrected by taking into account the data from
the study [5]: coo = 2.6851 - 1071"m is a distance between
the nearest-atom centers when P =0 and 7 = 0K. The
other three parameters (D, b, a) were determined by fitting
the values of the thermal expansion coefficient «, and
the isothermal elastic modulusBy, which are calculated
when P =0 and 7 = 300K, into the experimental data.
At the same time, we varied the following parame-
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ters: the specific sublimation energy (within the range
Loo = 500—700kJ/mol), the Debye temperature (within the
range Op = 200—700K) and the Griineisen parameter
(within the range pgo = 1—5). These ranges are caused
by inexactitude of the experimental estimates of the said
parameters for FCC-Rh. For Ly it was indicated in
the Refs. [26,27], so was for Oy = 480—530K in the
Refs. [3,7,11,28] and so was for pg = 0.8—2.8 in the
Refs. [1,7,11,28,29]. The new method of self-consistent
determination of the parameters of the pair interatomic
potential (1) is based on the fact that the values of Lo,
Bgp and ygp are determined in the experiments with smaller
accuracy than the values of a, and Br when P =0
and T = 300K. Therefore, the values of the potential pa-
rameters D, b and a were determined within the framework
of formalism from [15,16] by fitting into the experimental
values of @, and By when P = 0 and 7 = 300 K. Thus, for
FCC-Rh the following values of the parameters of the pair
interatomic potential (1) were obtained:

ro=2.681-10"""m, D/kg = 13800K,

b=11.85 a=2.15. (8)

Note that the parameters from (8) differ from the
FCC-Rh parameters previously determined by us in the
Ref. [15]. This is attributable to the fact that in the Ref. [15]
the values of D, b and a were obtained when varying
only the values of ®y and pgp at the constant values
ro =2.532-10719m and Loy = 555.76 kJ/mol, which were
taken from the Ref. [26].

In order to test the parameters of the interatomic potential
from (8), the method from the Refs. [15,16] was taken to
calculate the FCC-Rh properties. The first line of Figure 1
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Table 1. FCC-Rh properties when P = 0 and 7 = 300K. The first line is the calculation and further below are the data for FCC-Rh,
which are known from the literature

v =V/N, A’/atom a,, 107K~ Br, GPa B'(P) = (0Br/0P)r 0, K y
13.7555 29.244 225.541 6.693 311.532 2.303
13.757 [3] 25.44 [5] 266.6 [3] 31402, 489 [3] 229 [4]
(13.7635) [6] (18.8(PBE)) [6] 281 [4] (29-4.6) [§] 350 [4] (08-2.8) [7]
13.73 +0.07 [8] |(25(PBE)—28(LDA)) [11]| (245.13—250.25) [6] 5.34(24) [10] 480 [7] (23) [11]
13.766 + 0.016 [10] 20.5+0.12, 255280 + 160 [7] |(5.2(LDA)—5.3(PBE)) |490—530, (486.79(PBE)—
(13.342(LDA)— (29.9) [12] 301+9 [8] 1] 527.56(LDA)) [11]
14.178(PBE)) [11] 33.6 + 0.7 [13] 241.3 + 0.65 [10] 5.36 + 0.09, 1039 + 7 [12]
13.764 + 0.002, (2453(PBE)— (5.114) [12] 350 [13]
(13.764) [12] 305.6(LDA)) [11] 5.7+ 0.2 [13]
13.762 + 0.003 [13] 258 £ 3, (260.54) [12]|  (5.5(Vinet)—
251(3) [13] 507(BM)) [14]
(244.57(Vinet)—
251.08(BM)) [14]

shows the FCC-Rh properties that are calculated using the
potential parameters from (8) when P =0 and 7 = 300K.

As can be seen in Table 1, the agreement between the
calculated data and the experimental and theoretical (in
brackets) estimates of the other authors is quite good. At
the same time, it is necessary to take into account that the
values of By and B'(P) = (0Br/dP)r were experimentally
determined not in the point P = 0, but within a certain
pressure range [13]. The matter is that the value of Br
and B'(P) are determined by fitting the experimentally-
measured isothermal dependence P(v) into three-parameter
equations of state. The third-order Birch—Murnaghan
equation is often used:

P(v) = %BOTKU%>_7/3 ) (50)—5/3]
<{s _%(4—35)[(%)_2/3 -1

or the Vinet equation:

- () - (2)”
X exp{1.5(36 -1 {1 - <v£0>1/3} }

By fixing the value of vy, the values of Bor and Bj
are calculated within a certain pressure interval. I e., these
values are average for this interval. But if we take another
equation for approximation or a somewhat different pressure
interval, then the values By and Bj, are changed [13]. That
is why when using the Birch—Murnaghan equation some
values (BM) are obtained in the Ref. [14], while the other
values are obtained therein when using the Vinet equations,
as shown in Table 1. It is assumed in this calculation that the
values of Bor and B are not changed within this pressure

interval. In our calculations, the values of By and B’ are
calculated for the given temperature in the point P = 0. At
the same time, in our case the values of By and B’ are
changed with increase of the pressure along the isotherm.
Note that the value of © for rhodium is very approximately
determined. It is indicated by a spread interval of the value
of ® for rhodium from other studies that are presented
in Table 1. We have indicated incorrectness of modern
experimental methods of determining the values of ® and y
in the Ref. [28].

3.2. Equation of state

Figure 1 shows the isotherms of the FCC-Rh equation of
state. The pressure is in GPa, while the specific volume is
in A3/atom = 1073 m3/atom. The studies [15,16] describe
a method of calculating the equation of state P(v, T) for
a single-component crystal, whose atoms interact by the
pair potential (1). The solid lines mark our calculations of
the isotherms 300 (lower), 1000 (middle), 2000K (upper).
The dashdotted lines mark the results of calculations of
the isotherms 301 (Figure 1,a) and 1999K (Figure 1,b)
from the Ref [11]: with one dot for the PBE method
(Perdew—Burke—Ernzerhof generalized gradient approxi-
mation) and with two dots for the LDA method (local
density approximation). The symbols of the left graph mark
the results of the experimental studies at 300K: [2] — the
solid triangles, [8] — the solid circles, [12] — the solid
squares. Figure 1, b shows our calculations of the isotherms
1000 and 2000K (the solid lines) and the calculations of
the isotherm 1999K from the Ref [11] by the computer
simulation methods: the upper line is for FBA and the
lower line is for LDA. Note that in the Ref [11] has
also used a PBEsol calculation method, which is the PBE
method modified for densely packed solids. The results of
the PBEsol-method, which are obtained in the Ref. [11],
lie between the dependences obtained by the PBE- and

Physics of the Solid State, 2025, Vol. 67, No. 8
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Figure 2. Baric dependence of a) the elastic modulus of FCC-Rh b) and its thermal expansion coefficient. The solid lines mark our
calculations at 300, 1000, 2000 K, the dashdotted lines mark calculation of the isotherms 301 and 1999 K from the Ref. [11]: with one
dot for the PBE method and with two dots for the LDA method. The symbols in the right axes show results of the experimental studies
at 300K and P = 0. The open squares show the calculations of the isotherm 0K for Br and the isotherm 300K for «,, which are

obtained by the PBE method in the Ref. [6].

LDA-methods and, therefore, we did not include them in
the graphs. As can be seen in Figure 1, the agreement
between our calculations and the experimental data and the
computer calculations of the other authors is quite good.

3.3. Elastic modulus and thermal expansion

Figure 2 shows the baric dependences of the isothermal
elastic modulus (Br is in GPa, Figure 2,a) and the
isobaric thermal expansion coefficient (e, is in 107¢ /K,
Figure 2, b) for the FCC-Rh. Our studies [15,16] describe a
method of calculating the functions B¢ (P, T') and a,(P, T)
for a single-component crystal, whose atoms interact by the
pair potential (1). The solid lines mark our calculations of
the isotherms 300, 1000, 2000 K. The opens squares show
the calculations of the isotherm OK for By (Figure 2,a)
and the isotherm 300K for «, (Figure 2,b), which are
obtained by the PBE method in the Ref. [6]. The symbols
in the right axes show a spread region of the experimental
data at 300K and when P =0. The dashdotted lines
of Figure 2,b mark the calculations of the isotherms 301
and 1999K from the Ref [11]: with one dot for the PBE
computer simulation method (top) and two dots for the
LDA computer simulation method (bottom). As can be
seen in Figure 2, the agreement between our calculations
and the experimental and computer calculations of the other
authors is quite good. Therefore, we use this method with
the interatomic potential parameters from (8) for predicting
FCC-Rh properties, information about which is absent in the
literature.

Figure 3 show the baric dependences of the derivatives of
the isothermal elastic modulus with respect to the pressure
(B’(P) = (dBr/dP)r, Figure 3,a) and the thermal expan-
sion coefficient (a),(P) = (da,/dP)r, in 10~°1/(GPa - K),

1 Physics of the Solid State, 2025, Vol. 67, No. 8

Figure 3,b) along the isotherm 300 (the solid lines), 1000
(the dashed lines), 2000K (the dotted lines). As we have
not found any data about these dependences for FCC-Rh
in the literature, it can be stated that we were the first
to obtain these data. The estimates of other authors for
B'(P), which are obtained at 300K and when P =0, are
shown in Table 1. Usually, these papers have experimentally
determined the value of B’(P) not in the point P =0,
but within the certain pressure range. At the same time,
it was assumed in the majority of these studies that
the value of B/(P) was not changed with the pressure.
However, as can be seen in Figure 3, the function B'(P)
decreases with increase of the pressure. It can be seen
that the isotherms B’(P) intersect each other in the point
P = 25GPa, B'(P) = 6.13. 1t indicates that at this pressure
the function B’(P) does not depend on the temperature.

3.4. Specific surface energy

Several different methods for calculating specific (per
unit area) surface energy (o) for a single-component
substance crystal have been proposed to date (see, for
example, [30-42]). But most of these methods (as, for
example, in [32-36,38-42]) work only when 7 =0K
and P =0. Therefore, the issue of the dependence of
the value of o both on the temperature and the pressure
at which the crystal is located is relevant. Table 2 shows
the results of calculation of the FCC-Rh surface properties
when P =0 and when T = 10, 300, 1000, 2236 K, using
the Eqs (2)—(5) and the potential parameters from (8).

The literature has a lot of estimates of the value of ¢ for
the FCC-Rh facet (100). Below are some of them, which are
obtained by authors using various methods of calculation:
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Figure 3. Baric dependences a) of the derivative of the isothermal elastic modulus with respect to the pressure and b) the derivative of
the thermal expansion coefficient with respect to the pressure along the isotherms 300 (the solid lines), 1000 (the dashed lines), 2000 K
(the dotted lines).

Table 2. Values of the FCC-Rh surface properties, which are calculated when P = 0 and at the four temperatures

T,K| v/vy |6(100), 1073 J/m? | —6"(T),,107° J/(m*K) | =6’ (T)p,10~° J/(m’K) | ¢’ (P)7,1073 J/(m*GPa) | A,= — (3 InG/d In X)7
10|1.00348 3324.99 ~107° ~107° 9.51 1.0073

300 | 1.00951 3299.59 57.05 123.81 10.12 1.0377

1000 1.03238 3205.87 58.87 141.09 12.17 1.1278

2236 | 1.08238 3015.12 57.25 169.36 17.33 1.2945

o (100), 1073 J/m* = 2490 (0K) [30], 2325 () [31],
2810 [32], 3190 [33], 2190—2720 [34], 3120 [35], 3150 [36],
2600 [37], 3010 [38], 2470—3170 [39], 2350—3120 [40],
2560.307—3071.456 [42].

As can be seen, the agreement between our calculations
and the estimates of the other authors is quite good.
The estimates from the Refs. [30,31] were obtained by
WR. Tyson based on empirical relationships. But they are
referred to as experimentally measured ones in studies of
the other authors. In all other studies [32-42|, the said
estimates were obtained at 0K. That is why there is no
estimate of a value of the derivative ¢’(T)p = (30/9T)p
for FCC-Rh in the literature. Using the estimates from the
Refs. [30,31], one can obtain the value, which lies between
our data for the isochoric and isobaric derivatives with
respect to the temperature.

(AG/AT)p—g = —(2490—2325)/2236
=-73.8-107%J/(m* - K).

But this is the value average across the interval 0—2236 K.
As can be seen in Table 2, the function ¢'(T)p nonlin-
early decreases with the temperature from ¢'(0K)p =0
to o' (Twm)p < 0.

There is neither estimate of the value of o/(P) =
= (do/dP)r in the literature; meanwhile, the depen-
dence o (P) is necessary both when studying crack initiation
under baric action on the crystal and for obtaining the
equation of state for the nanocrystal. Note that the specific
surface energy for FCC-Rh has never been experimentally
estimated. The measurements are very labor-intensive and
they can be carried out only in a region near the melting
point of the crystal [43].

Figure 4,a shows the calculated baric dependences of
the specific surface energy (in 1073 J/m?) for the FCC-Rh
facet (100) along the isotherms (top-down) 300, 1000,
2000K. It can be seen that at the certain pressure P«
the function o (P) reaches its maximum with the following
coordinates:

Omax = 3519.8 - 10~3J/m? and P ax = 64.4GPa
forT = 300K,

Omax = 3474.6 - 1073)/m* and Pax = 69.4 GPa
for T = 1000K,

Omax = 3407.8 - 1073 J/m?* and P ox = 76.3 GPa
forT =2000K.

Physics of the Solid State, 2025, Vol. 67, No. 8



Study of surface properties and melting point of rhodium at different pressures

1331

0 {
0.590
3000 1 1 1 1 1 1 1 1 1

0.595  0.600

v/tljo

0.605

3000
0 20 40 60 80 100 120 140 160 180 200 0

Pressure,GPa

3500

3400

/m?

; 3300

10

© 3200

3100

500 1000 1500

Temperature, K

2000

Figure 4. Dependences of the specific surface energy of the facet (100) for FCC-Rh on the pressure and the temperature. a) Baric
dependences calculated along the isotherms 300, 1000, 2000 K. The insert has the dependence o (v/vo, T) within a fragmentation area.
b) Temperature dependences calculated along the isobars 0, 50 (the dashed line), 100 GPa.

Figure 4,b shows the calculated temperature depen-
dences of the specific surface energy (in 1073 J/m?) for
the FCC-Rh facet (100) along the isobars 100 and 50 GPa
(the upper line), 0 GPa (the lower line). Intersection of the
isobars 100 and 50 GPa is caused by a maximum in the
function o (P), which is shown in the left graph. It can
be seen in Figure 4 at certain compression (v/vg)g < 1 (or
when P > Pg) the function o (v/vy) transits into a negative
region. The insert shows a dependence of the function
o(v/vg, T) within the fragmentation area. This behavior
of the function o (v/vg) when v/vg < (v/vg)s shall induce
fragmentation of the crystal, where the crystal will tend to
increase its specific (per atom) intercrystalline surface in
any way. The effect of baric fragmentation was studied by
us in more detail in the Ref. [44] on the example of crystals
of neon, lithium and gold. For FCC-Rh, for the normalized
volume (v/vo)s and pressure Pg in a fragmentation point
(where o = 0) the following values are obtained:

(v/v0)x=0.590674 and Py =_819.115GPa for T =300K,
(v/vo)x=0.591815 and Ps=2817.215GPa for T=1000K,
(v/v0)x=0.593636 and Py =814.683 GPa for T =2000K.

3.5. Derivatives of the surface energy with
respect to the temperature

Figure 5, a shows the calculated baric dependences of the
derivative of the specific surface energy of the facet (100)
with respect to the temperature (in 106 J/(m” - K)) along
the isotherms (top-down) 300, 1000, 2000K. The solid
lines mark the isobaric derivative o’(T')p, while the dashed
lines mark the isochoric derivative o/(T),. It can be seen
that at the low pressures (ie., when P < 50—70 GPa) the
inequality is fulfilled |6/(T)p| > |0'(T),|. However, this
inequality is reversed at the high pressures. Therefore, for
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the crystal, it is impossible to equate the isochoric and
isobaric derivatives of the function ¢ with respect to the
temperature, as is done in some studies.

Figure 5,5 shows the calculated temperature depen-
dences of the derivative of the specific surface energy
with respect to the temperature (o'(T); = (30/9T);,
in 1076J/(m* - K), i = v, P) for FCC-Rh along the isobars
0, 50, 100 GPa. The solid lines mark the isobaric derivatives
o'(T)p, while the dashed lines mark the isochoric deriva-
tives ¢’(T),. It can be seen from Figure 4 that with isobaric
increase of the temperature, the value of o decreases at any
pressure. Therefore, in some studies, for the isobaric or
isochoric temperature dependence of the specific surface
energy a linear approximation of the following form was
used:

o(T)=0(T =0K) — constT. 9)

However, as can be seen in Figure 5, the approxima-
tion (9) is valid only at the high temperatures and pressures.
The use of the approximation (9) at the low temperatures
can lead both to quantitative errors and to violation of
the third law of thermodynamics. This is due to the fact
that contribution by the surface to the specific (per atom)
entropy and heat capacity (C;, both isochoric — i = v, and
isobaric — i = P) of the system is determined by the very
function ¢/(T),, i.e. the derivative of the specific surface
energy with respect to the temperature [45]:

z ao
Ssurf = — N ﬁ s
N surf oT i,N N T \oT v,Ndi,N

When T = 0K, according to the third law of thermo-
dynamics, for the specific entropy (s), heat capacity and
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the isobars 0, 50, 100 GPa. The solid lines mark the isobaric derivatives ¢'(T)p, while the dashed lines mark the isochoric derivatives

o'(T).

function a), - Br the following conditions must be satisfied:
lim s = +0,
T—0K

lim (8—s) = +0.
T—O0K\ 9V /

In this regard, as shown in the paper [45], the function o
must satisfy the following conditions:

lim 8—0 = -0,
T—0K\ 0T iN

-
T,N

lim T i 8—0- = —0.
T—0K |[0T \oT wNJiN

The conditions (10) are valid for any crystal structure,
at any specific volume of pressure as well as for any
size and shape of the nanocrystal. Therefore, the use of
the approximation (9) is not correct fro extrapolating the
function o (T) to the low-temperature region.

lim «,Br =
T50K 7

0(00 /0T )yn

im
T—0K ov

3.6. Derivative of the surface energy with respect
to the pressure

Figure 6 shows the calculated dependences of the
derivative of the specific surface energy with respect to
the pressure (¢/(P)r = (30/dP)r, in 1073 J/(m? - GPa))
for FCC-Rh. Figure 6,a shows the baric dependences
calculated along the isotherms (from bottom to top)
300, 1000, 2000K. Figure 6,b shows the temperature

dependences calculated along the isobars (top-down) 0, 50,
100 GPa. It can be seen that when P > 50 GPa the function
o'(P)r varies linearly along the isobar with increase of
the temperature. The inserts show the baric (on the left)
and temperature (on the right) dependences of the function
A, =—(0lno/dInX); of (5) along the said functions of
the temperature and the pressure. As can be seen from the
graphs, the function A, varies linearly both with isothermal
increase of the pressure and with isobaric increase of the
temperature.

It can be seen in the Figures 3 and 6 that the baric
dependences of the derivative of the isothermal elastic
modulus with respect to the pressure: B’(P) = (dB7/dP)r,
and of the derivative of the specific surface energy with
respect to the pressure: ¢'(P)r = (3o /dP)r are similar.
Figure 7 shows the dependences of the calculated function
o'(P)r (in 1073J/(m” - GPa)) on the value of B’(P).
Figure 7,a shows these dependences calculated along
the isotherms (from bottom to top) 300, 1000, 2000K.
Figure 7,b shows these dependences calculated along the
isobars 0, 50, 100 GPa. It can be seen that the dependence
of the function ¢’ (P)r on the value of B’(P) is linear along
all the isotherms and along the isobar 0 GPa. This makes
it possible to evaluate the magnitude o’(P)r by the value
of B’(P). However, along the isobars 50 and 100 GPa this
dependence has a more complex form, as shown in the
insert of Figure 7, b.

Using the function o (P, T), it is possible to evaluate
dependences of the Poison’s ratio up on the pressure and the
temperature. These dependences were calculated using the
formula obtained in the Ref. [46] and tested in the Ref. [47]:

B 1

pr(R.T) =75 — 48X, (R, T)[y(R)]?°
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wherein the function is introduced

o (R, T)R

Xse(R, T) = ——————.
sel ) roBr(R, T)

The inserts of Figure 7 shows the baric (Figure 7,a)
and temperature (Figure 7,b) dependences up. The
temperature dependence up for FCC-Rh when P = 0 was
experimentally studied in the Ref [48] by two different
methods. The insert of Figure 7 shows results of the
study [48] by solid circles. Our isobar, P = 0, lies somewhat
higher than the values of the Ref [48]. It can be seen
from the inserts of Figure 7 that up linearly decreases with
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isothermal increase of the pressure and linearly increases
with isobaric increase of the temperature.
3.7. Melting point

Using the interatomic potential parameters from (8) and
the method of the Ref. [25], the following values of the
parameters of the formula (7) were obtained for FCC-Rh
on the isotherm T, (0) = 2236 K when P = 0.

(0, T (0)) = 2.75269 - 10~ m,

(0, T(0)) = 265.317K.
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and its upper and lower boundaries.

Figure 8,a shows the baric dependences for the melting
point 7T,,(P) (in K), whereas Figure 8,5 shows the baric
dependences of the derivative of the melting point with
respect to the pressure. T, (P)=dTn/dP (in K/GPa).
The solid line marks our results. The function 7. (P)
was calculated by us by numerical differentiation of the
dependence Tp,(P) with respect to the pressure. The dashed
lines show the results of calculations from the Ref. [9] (the
lower line) and the Ref. [14] (the upper line). The dots of
Figure 8,a show experimental results for FCC-Rh from the
Ref. [1].

The function T, (P) was approximated in the Ref. [1] by
using the Simon—Glatzel equation of the following type:

P1°
Tm(P) = Tho [1 + —} . (11)
Py
The following parameters T0 = 2253 K,
Py=722+0.7GPa, ¢,=1/(5+1) were obtained

for FCC-Rh in the Ref. [1]. This dependence is shown in
Figure 8 by a thick dashdotted line. Thin dashdotted lines
above and under it mark the upper (when Py = 6.52 GPa,
¢y = 1/4) and the lower (when Py = 7.92GPa, ¢, = 1/6)
boundaries of this dependence. In the Ref. [14], the results
of calculations were FCC-Rh were also approximated
by the Eq. (11) with the parameters 7, = 2236K,
Py =21.8742GPa, ¢, = 0.4891. In Figure 8,a, the
dependence of the Ref. [14] is shown by a dashed line that
lies above the calculations of the Ref. [9]. The right graph
shows the derivative of the dependence (11) with respect
to the pressure, which is calculated by the formula

cy—1
dTn(P Cs P |
Tn(P) = ;I()): mOP—O|:1+—:| .

In Figure 8, b, the functions T, (P) were calculated by the
parameters provided in the Ref. [14]. It can be seen from

(12)

Figure 8 that our results for FCC-Rh well agree with the
results of the other authors.

3.8. Contribution by the electron subsystem to
the baric dependences

As shown in the Ref. [11], at the high temperatures, when
studying the FCC-Rh properties, it is also necessary to take
into account a contribution by thermally-excited electrons.
Then there is a question: how the baric and temperature
dependences presented herein will be changed when taking
into account the electron subsystem? When taking into
account the electron subsystem, it is necessary to include
the following summand into the specific free Helmholtz
energy [49-51]:

B Xel l Vel Tz,
2NA Vo

where N4 — the Avogadro’s number, y.; — the coefficient of
electron heat capacity, which is determined from measure-
ments of the heat capacity at the low temperature, yo —
the electron Griineisen parameter.

By assuming that the values of ). and y.; do not depend
on the temperature and the specific volume, it is easy
to obtain expressions for additional contributions into the
crystal properties from (13). For molar isochoric heat
capacity, the equations of state and the isothermal elastic
modulus, these contributions are written as follows

fel(v’ T) =

(13)

v Vel
cvd(v,T)—xel(—) T, (14)
Vo
Pa(v,T) =pag =22 (L — (15)
el\U, Vel 2NAU() Vo 5
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Xel v ycl_1
BTel(v, T) = Vel(l - yel) FYva (v_O) T2 (16)

ZNAU()

The expressions (14) and (16) can be used to obtain
an expression for the volume thermal expansion coefficient
as [52]

Cv el
VBr

}/3171
Xel v
= — T. 17
Vel NAU()BT<U()> ( )

Several methods were proposed to determine p.. For
example, ye = 2/3 is obtained [49-51] from the model

ap el(v7 T) = Vel
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of the perfect degenerate electron gas. ¢ = 1/2 is fol-
lowed [50,51] from the Thomas—Fermin model. The exper-
imental estimates done at the low temperatures from the re-
lationship [52]: ya=VBra,e/Cye, provided the following
value for FCC-Rh: p¢(Rh)=2.8 > y(Rh)7ox =1.9-2.0.
However, it can be seen from the expression (16) that when
Yel > 1, then Br¢ < 0, thereby indicating instability of this
system. Therefore, in order to evaluate the contribution
by the electron subsystem to the dependences of the
FCC-Rh properties on the P—T-arguments we take that

Ve1:2/3~
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The measurements of heat capacity at the low tempera-
tures for FCC-Rh were taken to obtain [53] that x«(Rh) =
= 4.65 + 0.018 mJ/(mol - K?). Hence,

Xel(Rh)T /(kgNy) = 0.56 - 1073 T. (18)

Using the method of the Refs. [15,16] taking into account
the expressions (13)—(17) as well as using the potential
parameters from (8) and the value from (18) and ye = 2/3,
we have calculated the baric dependences of the FCC-Rh
properties along the isotherms 300 and 2000 K.

The calculations have shown that of the studied
dependences the following properties are negligibly
changed: P(T,v), ©(T,P), y(T,P), q(T,P), z(T,P) =
= —(@Ing/dnv)r, Br(T.P), B'(P)=(3Br/dP)r,
o(T,P), o'(T), = (006/0T)y,, o' (P) = (06/0P)7, Ap, up.
There is also no change of the dependence of the derivative
of the specific surface energy with respect to the pressure
on the derivative of the elastic modulus with respect to the
pressure, which is shown in Figure 7. As shown in the
Figures 9 and 10, the isotherm 2000 K has the following
functions noticeably changed: «,(T,P)= (dlnv/dT)p,
a,(P) = (0a,/dP)r, ¢'(T)p = (30/3T)p. At the same
time, as can be seen in Figure 9,a, the agreement of our
dependence «,(T =2000K, P) with the calculations of
the Ref. [11] is improved. However, as can be seen from the
Figures 9 and 10, with increase of the pressure along the
isotherm 2000 K the contribution by the electron subsystem
is reduced.

As can be seen from Figure 10, with taking into account
the electron contribution, the dependence ¢'(T), is not
changed, whereas the values of |6/ (T)p| somewhat increase
at the low pressures and the high temperatures. With
increase of the pressure, the influence of the electron
subsystem is reduced. The baric dependence of the melting

point has been calculated to show (Figure 11) that even at
the low pressures the contribution by the electron subsystem
is very small, and with increase of the pressure this
contribution disappears.

4. Conclusion

Within the framework of the analytical method, the
self-consistent method was used to calculate all the four
parameters of the Mie—Lennard-Jones for FCC-Rh. The
obtained potential parameters were used to calculate the
Debye temperature, the Griineisen parameter, the equation
of state, the isothermal elastic modulus and the thermal
expansion coefficient of FCC-Rh. It is shown that the
calculated dependences well agree with the data that are
obtained both experimentally and by means of computer
simulation.

This is the first study that calculates for FCC-Rh the
baric dependences of the derivatives of the isothermal elastic
modulus: B’(P) = (dBr/dP)r and the thermal expansion
coefficient with respect to the pressure: @, (P) = (da,/dP)r
along the isotherms 300, 1000, 2000 K. It was shown that
the isotherms B’(P) intersected each other in the point
P = 25GPa, B/(P) = 6.13. It indicates that at this pressure
the function B’(P) does not depend on the temperature.

It is for the first time that the FCC-Rh surface properties
are calculated at the different P—T-conditions: the specific
surface energy of the facet (100): o(100), its derivatives
with respect to the temperature: ¢'(T); = (d0/3T); (both
the isochoric one: i = v, and the isobaric one: i = P) and
the isothermal derivative of the function o with respect to
the pressure: o/(P)r = (d0/3P)r. We have obtained both
the baric dependences of the said functions along the three
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isotherms: 300, 1000, 2000K as well as the temperature
dependences along the three isobars: 0, 50, 100 GPa.

We have also obtained the estimates for the FCC-Rh
fragmentation point at the various temperatures. It is shown
that the function ¢’(P)r for FCC-Rh linearly depends on
the value of the isothermal derivative of the elastic modulus
with respect to the pressure B’(P). The obtained results
for the functions Br (P, T) and o (P, T) were used to study
for the first time the dependences of the Poison’s ratio of
FCC-Rh on the pressure and the temperature.

And the obtained dependences were used to calculate the
baric dependences of the melting point and its derivative
with respect to the pressure for FCC-Rh. The good agree-
ment with the literature-known data is obtained.

The influence of the electron subsystem on the baric
dependences of the studied FCC-Rh properties is studied.
It is shown that of the studied dependences the following
properties are insignificantly changed: P(T,v), ©(T, P),
y(I.P), ¢(T.P), z(T.P)=—(3lng/dlnv)s, Br(T.P),
B'(P)=(dBr/3P)r, o(T,P), ¢'(T),=(306/9T),, o' (P)=
= (80/dP)r, Ap, the Poison’s ratio up. At the high temper-
atures, the following dependences are noticeably changed:
ay(T, P)=0mnv/dT)p, «a,(P)=(da,/0P)r, o'(T)p =
= (00 /0T )p. However, with increase of the pressure along
the isotherm the contribution by the electron subsystem is
reduced. Even at the low pressures, the contribution by the
electron subsystem to the baric dependence of the melting
point of FCC-Rh is very small, and with increase of the
pressure this contribution disappears.
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