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An analytical method is proposed for calculating the lattice and surface properties of rhodium (Rh) at any

(corresponding to the solid phase) values of temperature T and pressure P . Within the framework of this method,

the parameters of the pairwise interatomic Mie−Lennard-Jones potential for Rh are determined in a self-consistent

manner. The obtained potential parameters were tested by calculating the equation of state and baric dependences of

the elastic modulus (BT ) and the thermal expansion coefficient. Using this analytical method, the surface properties

of rhodium were studied for the first time: specific surface energy (σ ) and derivatives of σ in temperature and

pressure: σ ′(P)T = (∂σ/∂P)T . Both baric dependences of these functions along three isotherms: 300, 1000,

2000K, and temperature dependences along three isobars: 0, 50, 100GPa were obtained. Estimates for the

fragmentation point of rhodium at different temperatures are obtained. It is shown that the function σ ′(P) for

rhodium depends linearly on the value of the pressure derivative of the elastic modulus B ′(P) = (∂BT/∂P)T . The

dependences of Poisson’s ratio on pressure and temperature have been studied. The baric dependence of the Rh

melting point is calculated. The influence of the electronic subsystem on the obtained dependencies is studied.
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Gröneisen parameter, melting point.
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1. Introduction

Rhodium (Rh) is one of the six transition metal elements

of the
”
platinum group“ (rhutenium, rhodium, palladium,

osmium, iridium, platinum), which have similar physical

and chemical properties. Rhodium was discovered by the

English scientist William Hyde Wollaston in 1803.Thanks to

its corrosion resistance, high melting temperature (2236K),
low electrical resistance, high reflectivity, structural sta-

bility and catalytic properties, rhodium is widely applied

in various fields of science and engineering. Unique

properties of rhodium have been studied for a long

time both experimentally and theoretically [1–13]. At

the same time, due to difficulties of obtaining rhodium

and removing impurities from it, some of its properties

are either experimentally understudied or not studied at

all. The rhodium properties were theoretically studied by

methods of computer simulation as well. However, recently

performed calculations both of the equations of state and

baric dependences of the various properties of rhodium

have shown contradictory results [9–14]. Some properties

of rhodium are unstudied even theoretically. For example,

the literature has no data about a dependence of a specific

surface energy of rhodium on neither the temperature T nor

the pressure P . At the same time, increasing use of rhodium

in catalytic converters as well as in metalorganic chemistry

requires detailed investigation of the surface properties of

rhodium at the various P−T -conditions. At this, whereas

the equation of state, an elastic modulus and thermal

expansion of solid rhodium are recently studied in detail [8-
13], but the baric dependence of the melting point (Tm(P))
for rhodium is understudied. Only one 1959’s experimental

study by H.M. Strong and F.P. Bundy [1] for investigating the
dependence Tm(P) of rhodium. Two theoretical studies for

investigating the dependence Tm(P) for rhodium have been

recently performed: using the Full-Potential Linear Muffin-

Tin Orbital (FM-LMTO) method of computer simulation

in [9] and the statistical moment method (SMM) in [14]. In
this regard, an analytical method (i.e. without computer

simulation and artificial intelligence), which is presented

in [15–17], was taken in the present study to calculate the

equation of state of rhodium and the baric dependences of

its lattice and surface properties from unified positions. The

same method was also taken to study the baric dependence

of the Rh melting point.

2. Calculation method

Our used analytical method of calculation of the single-

component crystal was presented in detail in [15–17]. In

order to describe pairwise interatomic interaction, this

method uses a four-parameter Mie–Lennard-Jones potential,
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which is expressed as follows:

ϕ(r) =
D

(b − a)

[
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(
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)b

− b

(
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)a]

, (1)

where D and r0 — the depth and the coordinate of the

potential minimum, b > a > 1 — numerical parameters,

r — the distance between atom centers.

Using the
”
only nearest-neighbor interaction“ approxima-

tion and applying the Einstein crystal model for the oscilla-

tion spectrum, the following expressions were obtained for

specific (per unit area) surface energy of the facet (100) of

the macrocrystal (σ ), its isochoric and isobaric derivatives

with respect to the temperature and the derivative of σ with

respect to the specific area in the Refs. [15,16]:
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(5)
Here, kn — the first coordination number, R = r0/c —

the relative linear density of the crystal, c = (6kp v/π)1/3 —
the distance between the nearest-atom centers, kp —
the structure packing index, v = V/N — the specific

volume, V and N — the volume and the number of

the crystal atoms, α = π/(6kp), kB = 1.3807 · 10−23 J/K —
the Boltzmann constant, 2E — the Einstein tempera-

ture, which is related to the Debye temperature by the

relationship [17,18] 2 = (4/3)2E, γ = −(∂ ln2/∂ ln v)T

and q = (∂ ln γ/∂ ln v)T — the first and second Gröneisen

parameters, αp = (∂ ln v/∂T )P — the coefficient of thermal

volume expansion, 6 — the area of the system surface,

U(R) =
aRb − bRa

b − a
,
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[
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,
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, FE(y) =

y2 exp(y)
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,

ty (y) = 1−
2y exp(y)

[exp(2y) − 1]
, v0 =

πr30
6k p

.

We can easily see that when T → 0K the functions

of (3) and (4) tend to zero at any value of the density R,

which complies with the third law of thermodynamics.

The formulas for calculating the Debye temperature 2

and the Grüneisen parameters, equation of state P(v, T ),
c(P, T ), the thermal expansion coefficient αp(P, T ) and

other properties of the crystal within the framework of this

method are described in our studies [15,16].
The obtained expressions (2)−(5) make it possible to

calculate the dependence of the surface properties on

the normalized volume v/v0 = (c/r0)
3 = R−3 and the

temperature for the single-component crystal with a given

structure (i. e. for given values of kn and kp), if the

parameters of the interatomic potential (1) are known. Note

that the expressions (2)−(5) do not take into account either

vacancies or self-diffusion of atoms, because, as shown

in [19,20], their influence becomes negligible when the

crystal is compressed. Here, as well as in [15,16,20], the
contribution by the electron subsystem to the thermody-

namic parameters is not taken into account, because the

potential (1) describes the pairwise interaction of electrically

neutral atoms. In addition, as shown in the Refs. [21–24],,
the errors that arise in the lattice properties calculation due

to exclusion of the electron subsystem from consideration

are negligibly small. For example, as indicated in [21],
for gold the contribution by the electron subsystem to

the pressure is 0.01 and 0.5 GPa at 1000 and 5000K,

respectively. This contribution is much smaller than the

error in pressure measurements at these temperatures.

In the Ref. [25] we have proposed a method for

calculating the dependence Tm(P), in which the dependence

Tm(P) is calculated by the formula
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(
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)

exp
[

−
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3
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)

×
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]

, (6)

where Tm(0) — the crystal melting point at P = 0,

αp

(

P, Tm(0)
)

— the thermal expansion coefficient at the

pressure P , which is calculated along the isotherm Tm(0),
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(
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The function f y(yw) appears in (7) due to taking into

account quantum effects and is written as

f y(yw) =
2[1− exp(−yw)]

yw[1 + exp(−yw)]
, yw =

2E

T
=

32

4T
.

This method was tested in Ref. [25] when calculating

the dependence Tm(P) for crystals of gold, platinum and

niobium, and it showed good results.
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Figure 1. FCC-Rh equation of state. The solid lines mark our calculations at 300 (lower), 1000 (middle), 2000K (upper). The dashdotted
lines mark the calculations of the isotherms 301 (a) and 1999K (b) from the Ref. [11]: with one dot for the PBE computer simulation

method and with two dots for the LDA method. a) — The symbols mark the results of the experimental studies at 300K: [2] — the solid

triangles, [8] — the solid circles, [12] — the solid squares. b) Our calculations of the isotherms 1000 and 2000K (the solid lines) and

calculations of the isotherm 1999K from [11]: the top is for PBE, and the bottom is for LDA.

3. Calculation results

3.1. Determination of the interatomic potential

parameters

It is known that rhodium (m(Rh) = 102.906 a.m.u.) has

face-centered cubic (FCC) structure (kn = 12, kp = 0.7405)
and does not experience polymorphous phase transitions

up to 1000GPa= 1TPa [9]. The Rh melting point at

P = 0 is Tm(P = 0) = 2236 ± 3K [5]. The parameters

of the pair interatomic potential (1) for FCC-Rh were

initially determined by us with the use of a self-consistency

method that is described in the Ref. [15]. At the same

time, the values of r0 and specific sublimation energy L00

were taken from the Ref. [26]. The index 00 means that

this value is related to P = 0 and T = 0K. By varying

the values of 200 and γ00, in the Ref. [15] we have

determined the potential degrees b and a by fitting values

of the thermal expansion coefficient αp and the isothermal

elastic modulus BT = −v(∂P/∂v)T (that are calculated

when P = 0 and T = 300K) into the experimental data).
However, the values of r0, D, b and a , which are obtained

in this way for FCC-Rh, did not allow obtaining a good

dependence for the equation of state P(v, T ). Therefore, a
new method of determination of the interatomic potential

parameters (1) was used in the present study. The value

of r0 was corrected by taking into account the data from

the study [5]: c00 = 2.6851 · 10−10 m is a distance between

the nearest-atom centers when P = 0 and T = 0K. The

other three parameters (D, b, a) were determined by fitting

the values of the thermal expansion coefficient αp and

the isothermal elastic modulusBT , which are calculated

when P = 0 and T = 300K, into the experimental data.

At the same time, we varied the following parame-

ters: the specific sublimation energy (within the range

L00 = 500−700 kJ/mol), the Debye temperature (within the

range 200 = 200−700K) and the Grüneisen parameter

(within the range γ00 = 1−5). These ranges are caused

by inexactitude of the experimental estimates of the said

parameters for FCC-Rh. For L00 it was indicated in

the Refs. [26,27], so was for 200 = 480−530K in the

Refs. [3,7,11,28] and so was for γ00 = 0.8−2.8 in the

Refs. [1,7,11,28,29]. The new method of self-consistent

determination of the parameters of the pair interatomic

potential (1) is based on the fact that the values of L00,

200 and γ00 are determined in the experiments with smaller

accuracy than the values of αp and BT when P = 0

and T = 300K. Therefore, the values of the potential pa-

rameters D, b and a were determined within the framework

of formalism from [15,16] by fitting into the experimental

values of αp and BT when P = 0 and T = 300K. Thus, for

FCC-Rh the following values of the parameters of the pair

interatomic potential (1) were obtained:

r0 = 2.681 · 10−10 m, D/kB = 13 800K,

b = 11.85, a = 2.15. (8)

Note that the parameters from (8) differ from the

FCC-Rh parameters previously determined by us in the

Ref. [15]. This is attributable to the fact that in the Ref. [15]
the values of D, b and a were obtained when varying

only the values of 200 and γ00 at the constant values

r0 = 2.532 · 10−10 m and L00 = 555.76 kJ/mol, which were

taken from the Ref. [26].

In order to test the parameters of the interatomic potential

from (8), the method from the Refs. [15,16] was taken to

calculate the FCC-Rh properties. The first line of Figure 1

Physics of the Solid State, 2025, Vol. 67, No. 8
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Table 1. FCC-Rh properties when P = 0 and T = 300K. The first line is the calculation and further below are the data for FCC-Rh,

which are known from the literature

v = V/N, Å
3/atom αp, 10

−6 K−1 BT , GPa B ′(P) = (∂BT /∂P)T 2, K γ

13.7555 29.244 225.541 6.693 311.532 2.303

13.757 [5] 25.44 [5] 266.6 [3] 3.1± 0.2, 489 [3] 2.29 [4]
(13.7635) [6] (18.8(PBE)) [6] 281 [4] (2.9−4.6) [8] 350 [4] (0.8−2.8) [7]

13.73± 0.07 [8] (25(PBE)−28(LDA)) [11] (245.13−250.25) [6] 5.34(24) [10] 480 [7] (2.3) [11]
13.766± 0.016 [10] 20.5± 0.12, 255−280± 160 [7] (5.2(LDA)−5.3(PBE)) 490−530, (486.79(PBE)−

(13.342(LDA)− (29.9) [12] 301± 9 [8] [11] 527.56(LDA)) [11]
14.178(PBE)) [11] 33.6± 0.7 [13] 241.3± 0.65 [10] 5.36± 0.09, 1039± 7 [12]
13.764± 0.002, (245.3(PBE)− (5.114) [12] 350 [13]
(13.764) [12] 305.6(LDA)) [11] 5.7± 0.2 [13]

13.762± 0.003 [13] 258± 3, (260.54) [12] (5.5(Vinet)−
251(3) [13] 5.07(BM)) [14]

(244.57(Vinet)−
251.08(BM)) [14]

shows the FCC-Rh properties that are calculated using the

potential parameters from (8) when P = 0 and T = 300K.

As can be seen in Table 1, the agreement between the

calculated data and the experimental and theoretical (in
brackets) estimates of the other authors is quite good. At

the same time, it is necessary to take into account that the

values of BT and B ′(P) = (∂BT /∂P)T were experimentally

determined not in the point P = 0, but within a certain

pressure range [13]. The matter is that the value of BT

and B ′(P) are determined by fitting the experimentally-

measured isothermal dependence P(v) into three-parameter

equations of state. The third-order Birch−Murnaghan

equation is often used:

P(v) =
3

2
B0T

[(

v

v0

)

−7/3

−

(

v

v0

)

−5/3]

×

{

1−
3

4
(4− B ′

0)

[(

v

v0

)

−2/3

− 1

]}

,

or the Vinet equation:

P(v) = 3B0T

(

v

v0

)

−2/3[

1−

(

v

v0

)1/3]

× exp

{

1.5(B ′

0 − 1)

[

1−

(

v

v0

)1/3]}

.

By fixing the value of v0, the values of B0T and B ′

0

are calculated within a certain pressure interval. I. e., these

values are average for this interval. But if we take another

equation for approximation or a somewhat different pressure

interval, then the values BT and B ′

0 are changed [13]. That
is why when using the Birch−Murnaghan equation some

values (BM) are obtained in the Ref. [14], while the other

values are obtained therein when using the Vinet equations,

as shown in Table 1. It is assumed in this calculation that the

values of B0T and B ′

0 are not changed within this pressure

interval. In our calculations, the values of BT and B ′ are

calculated for the given temperature in the point P = 0. At

the same time, in our case the values of BT and B ′ are

changed with increase of the pressure along the isotherm.

Note that the value of 2 for rhodium is very approximately

determined. It is indicated by a spread interval of the value

of 2 for rhodium from other studies that are presented

in Table 1. We have indicated incorrectness of modern

experimental methods of determining the values of 2 and γ

in the Ref. [28].

3.2. Equation of state

Figure 1 shows the isotherms of the FCC-Rh equation of

state. The pressure is in GPa, while the specific volume is

in Å
3/atom= 10−30 m3/atom. The studies [15,16] describe

a method of calculating the equation of state P(v, T ) for

a single-component crystal, whose atoms interact by the

pair potential (1). The solid lines mark our calculations of

the isotherms 300 (lower), 1000 (middle), 2000K (upper).
The dashdotted lines mark the results of calculations of

the isotherms 301 (Figure 1, a) and 1999K (Figure 1, b)
from the Ref. [11]: with one dot for the PBE method

(Perdew−Burke−Ernzerhof generalized gradient approxi-

mation) and with two dots for the LDA method (local
density approximation). The symbols of the left graph mark

the results of the experimental studies at 300K: [2] — the

solid triangles, [8] — the solid circles, [12] — the solid

squares. Figure 1, b shows our calculations of the isotherms

1000 and 2000K (the solid lines) and the calculations of

the isotherm 1999K from the Ref. [11] by the computer

simulation methods: the upper line is for FBA and the

lower line is for LDA. Note that in the Ref. [11] has

also used a PBEsol calculation method, which is the PBE

method modified for densely packed solids. The results of

the PBEsol-method, which are obtained in the Ref. [11],
lie between the dependences obtained by the PBE- and

Physics of the Solid State, 2025, Vol. 67, No. 8
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Figure 2. Baric dependence of a) the elastic modulus of FCC-Rh b) and its thermal expansion coefficient. The solid lines mark our

calculations at 300, 1000, 2000K, the dashdotted lines mark calculation of the isotherms 301 and 1999K from the Ref. [11]: with one

dot for the PBE method and with two dots for the LDA method. The symbols in the right axes show results of the experimental studies

at 300K and P = 0. The open squares show the calculations of the isotherm 0K for BT and the isotherm 300K for αp, which are

obtained by the PBE method in the Ref. [6].

LDA-methods and, therefore, we did not include them in

the graphs. As can be seen in Figure 1, the agreement

between our calculations and the experimental data and the

computer calculations of the other authors is quite good.

3.3. Elastic modulus and thermal expansion

Figure 2 shows the baric dependences of the isothermal

elastic modulus (BT is in GPa, Figure 2, a) and the

isobaric thermal expansion coefficient (αp is in 10−6 1/K,

Figure 2, b) for the FCC-Rh. Our studies [15,16] describe a

method of calculating the functions BT (P, T ) and αp(P, T )
for a single-component crystal, whose atoms interact by the

pair potential (1). The solid lines mark our calculations of

the isotherms 300, 1000, 2000K. The opens squares show

the calculations of the isotherm 0K for BT (Figure 2, a)
and the isotherm 300K for αp (Figure 2, b), which are

obtained by the PBE method in the Ref. [6]. The symbols

in the right axes show a spread region of the experimental

data at 300K and when P = 0. The dashdotted lines

of Figure 2, b mark the calculations of the isotherms 301

and 1999K from the Ref. [11]: with one dot for the PBE

computer simulation method (top) and two dots for the

LDA computer simulation method (bottom). As can be

seen in Figure 2, the agreement between our calculations

and the experimental and computer calculations of the other

authors is quite good. Therefore, we use this method with

the interatomic potential parameters from (8) for predicting

FCC-Rh properties, information about which is absent in the

literature.

Figure 3 show the baric dependences of the derivatives of

the isothermal elastic modulus with respect to the pressure

(B ′(P) = (∂BT /∂P)T , Figure 3, a) and the thermal expan-

sion coefficient (α′

p(P) = (∂αp/∂P)T , in 10−6 1/(GPa · K),

Figure 3, b) along the isotherm 300 (the solid lines), 1000
(the dashed lines), 2000 K (the dotted lines). As we have

not found any data about these dependences for FCC-Rh

in the literature, it can be stated that we were the first

to obtain these data. The estimates of other authors for

B ′(P), which are obtained at 300K and when P = 0, are

shown in Table 1. Usually, these papers have experimentally

determined the value of B ′(P) not in the point P = 0,

but within the certain pressure range. At the same time,

it was assumed in the majority of these studies that

the value of B ′(P) was not changed with the pressure.

However, as can be seen in Figure 3, the function B ′(P)
decreases with increase of the pressure. It can be seen

that the isotherms B ′(P) intersect each other in the point

P = 25GPa, B ′(P) = 6.13. It indicates that at this pressure

the function B ′(P) does not depend on the temperature.

3.4. Specific surface energy

Several different methods for calculating specific (per
unit area) surface energy (σ ) for a single-component

substance crystal have been proposed to date (see, for

example, [30–42]). But most of these methods (as, for

example, in [32–36,38–42]) work only when T = 0K

and P = 0. Therefore, the issue of the dependence of

the value of σ both on the temperature and the pressure

at which the crystal is located is relevant. Table 2 shows

the results of calculation of the FCC-Rh surface properties

when P = 0 and when T = 10, 300, 1000, 2236K, using

the Eqs (2)−(5) and the potential parameters from (8).

The literature has a lot of estimates of the value of σ for

the FCC-Rh facet (100). Below are some of them, which are

obtained by authors using various methods of calculation:

1 Physics of the Solid State, 2025, Vol. 67, No. 8
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Table 2. Values of the FCC-Rh surface properties, which are calculated when P = 0 and at the four temperatures

T , K v/v0 σ (100), 10−3 J/m2
−σ ′(T )v ,10

−6 J/(m2
K) −σ ′(T )P ,10

−6 J/(m2
K) σ ′(P)T ,10

−3 J/(m2
GPa) 1p= − (∂ ln σ/∂ ln6)T

10 1.00348 3324.99 ∼ 10−6
∼ 10−6 9.51 1.0073

300 1.00951 3299.59 57.05 123.81 10.12 1.0377

1000 1.03238 3205.87 58.87 141.09 12.17 1.1278

2236 1.08238 3015.12 57.25 169.36 17.33 1.2945

σ (100), 10−3 J/m2 = 2490 (0K) [30], 2325 (Tm) [31],
2810 [32], 3190 [33], 2190−2720 [34], 3120 [35], 3150 [36],
2600 [37], 3010 [38], 2470−3170 [39], 2350−3120 [40],
2560.307−3071.456 [42].
As can be seen, the agreement between our calculations

and the estimates of the other authors is quite good.

The estimates from the Refs. [30,31] were obtained by

W.R. Tyson based on empirical relationships. But they are

referred to as experimentally measured ones in studies of

the other authors. In all other studies [32–42], the said

estimates were obtained at 0K. That is why there is no

estimate of a value of the derivative σ ′(T )P = (∂σ/∂T )P

for FCC-Rh in the literature. Using the estimates from the

Refs. [30,31], one can obtain the value, which lies between

our data for the isochoric and isobaric derivatives with

respect to the temperature.

(1σ/1T )P=0 = −(2490−2325)/2236

= −73.8 · 10−6 J/(m
2
·K).

But this is the value average across the interval 0−2236K.

As can be seen in Table 2, the function σ ′(T )P nonlin-

early decreases with the temperature from σ ′(0K)P = 0

to σ ′(Tm)P < 0.

There is neither estimate of the value of σ ′(P) =
= (∂σ/∂P)T in the literature; meanwhile, the depen-

dence σ (P) is necessary both when studying crack initiation

under baric action on the crystal and for obtaining the

equation of state for the nanocrystal. Note that the specific

surface energy for FCC-Rh has never been experimentally

estimated. The measurements are very labor-intensive and

they can be carried out only in a region near the melting

point of the crystal [43].

Figure 4, a shows the calculated baric dependences of

the specific surface energy (in 10−3 J/m2) for the FCC-Rh

facet (100) along the isotherms (top-down) 300, 1000,

2000K. It can be seen that at the certain pressure Pmax

the function σ (P) reaches its maximum with the following

coordinates:

σmax = 3519.8 · 10−3 J/m2 and Pmax = 64.4GPa

for T = 300K,

σmax = 3474.6 · 10−3J/m2 and Pmax = 69.4GPa

for T = 1000K,

σmax = 3407.8 · 10−3 J/m2 andPmax = 76.3GPa

for T = 2000K.
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Figure 4, b shows the calculated temperature depen-

dences of the specific surface energy (in 10−3 J/m2) for

the FCC-Rh facet (100) along the isobars 100 and 50GPa

(the upper line), 0GPa (the lower line). Intersection of the

isobars 100 and 50GPa is caused by a maximum in the

function σ (P), which is shown in the left graph. It can

be seen in Figure 4 at certain compression (v/v0)fr < 1 (or
when P > P fr) the function σ (v/v0) transits into a negative

region. The insert shows a dependence of the function

σ (v/v0, T ) within the fragmentation area. This behavior

of the function σ (v/v0) when v/v0 < (v/v0)fr shall induce
fragmentation of the crystal, where the crystal will tend to

increase its specific (per atom) intercrystalline surface in

any way. The effect of baric fragmentation was studied by

us in more detail in the Ref. [44] on the example of crystals

of neon, lithium and gold. For FCC-Rh, for the normalized

volume (v/v0)fr and pressure P fr in a fragmentation point

(where σ = 0) the following values are obtained:

(v/v0)fr =0.590674 and P fr=819.115GPa for T =300K,

(v/v0)fr =0.591815 and P fr=817.215GPa for T =1000K,

(v/v0)fr =0.593636 and P fr=814.683GPa for T =2000K.

3.5. Derivatives of the surface energy with
respect to the temperature

Figure 5, a shows the calculated baric dependences of the

derivative of the specific surface energy of the facet (100)

with respect to the temperature (in 10−6 J/(m
2
· K)) along

the isotherms (top-down) 300, 1000, 2000K. The solid

lines mark the isobaric derivative σ ′(T )P , while the dashed

lines mark the isochoric derivative σ ′(T )v . It can be seen

that at the low pressures (i.e., when P < 50−70GPa) the

inequality is fulfilled |σ ′(T )P | > |σ ′(T )v |. However, this

inequality is reversed at the high pressures. Therefore, for

the crystal, it is impossible to equate the isochoric and

isobaric derivatives of the function σ with respect to the

temperature, as is done in some studies.

Figure 5, b shows the calculated temperature depen-

dences of the derivative of the specific surface energy

with respect to the temperature (σ ′(T )i = (∂σ/∂T )i ,

in 10−6 J/(m
2
·K), i = v, P) for FCC-Rh along the isobars

0, 50, 100GPa. The solid lines mark the isobaric derivatives

σ ′(T )P , while the dashed lines mark the isochoric deriva-

tives σ ′(T )v . It can be seen from Figure 4 that with isobaric

increase of the temperature, the value of σ decreases at any

pressure. Therefore, in some studies, for the isobaric or

isochoric temperature dependence of the specific surface

energy a linear approximation of the following form was

used:

σ (T ) = σ (T = 0K) − const T. (9)

However, as can be seen in Figure 5, the approxima-

tion (9) is valid only at the high temperatures and pressures.

The use of the approximation (9) at the low temperatures

can lead both to quantitative errors and to violation of

the third law of thermodynamics. This is due to the fact

that contribution by the surface to the specific (per atom)
entropy and heat capacity (C i , both isochoric — i = v , and

isobaric — i = P) of the system is determined by the very

function σ ′(T )v , i. e. the derivative of the specific surface

energy with respect to the temperature [45]:

s surf = −

(

6

N

)(

∂σ

∂T

)

,

(

C i

N

)

surf

= T

(

∂s surf

∂T

)

i,N

= −

(

6

N

)

T

[

∂

∂T

(

∂σ

∂T

)

v,N

]

i,N

.

When T = 0K, according to the third law of thermo-

dynamics, for the specific entropy (s), heat capacity and
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function αp · BT the following conditions must be satisfied:

lim
T→0 K

s = +0, lim
T→0 K

C i

N
= +0,

lim
T→0 K

αpBT = lim
T→0 K

(

∂s

∂v

)

T

= +0.

In this regard, as shown in the paper [45], the function σ

must satisfy the following conditions:

lim
T→0 K

(

∂σ

∂T

)

i,N

= −0,

lim
T→0 K

[

∂(∂σ/∂T )v,N
∂v

]

T,N

= −0,

lim
T→0 K

T

[

∂

∂T

(

∂σ

∂T

)

v,N

]

i,N

= −0.



















































(10)

The conditions (10) are valid for any crystal structure,

at any specific volume of pressure as well as for any

size and shape of the nanocrystal. Therefore, the use of

the approximation (9) is not correct fro extrapolating the

function σ (T ) to the low-temperature region.

3.6. Derivative of the surface energy with respect
to the pressure

Figure 6 shows the calculated dependences of the

derivative of the specific surface energy with respect to

the pressure (σ ′(P)T = (∂σ/∂P)T , in 10−3 J/(m2 · GPa))
for FCC-Rh. Figure 6, a shows the baric dependences

calculated along the isotherms (from bottom to top)
300, 1000, 2000K. Figure 6, b shows the temperature

dependences calculated along the isobars (top-down) 0, 50,

100GPa. It can be seen that when P > 50GPa the function

σ ′(P)T varies linearly along the isobar with increase of

the temperature. The inserts show the baric (on the left)
and temperature (on the right) dependences of the function

1p = −(∂ ln σ/∂ ln6)T of (5) along the said functions of

the temperature and the pressure. As can be seen from the

graphs, the function 1p varies linearly both with isothermal

increase of the pressure and with isobaric increase of the

temperature.

It can be seen in the Figures 3 and 6 that the baric

dependences of the derivative of the isothermal elastic

modulus with respect to the pressure: B ′(P) = (∂BT/∂P)T ,

and of the derivative of the specific surface energy with

respect to the pressure: σ ′(P)T = (∂σ/∂P)T are similar.

Figure 7 shows the dependences of the calculated function

σ ′(P)T (in 10−3 J/(m2 · GPa)) on the value of B ′(P).
Figure 7, a shows these dependences calculated along

the isotherms (from bottom to top) 300, 1000, 2000K.

Figure 7, b shows these dependences calculated along the

isobars 0, 50, 100GPa. It can be seen that the dependence

of the function σ ′(P)T on the value of B ′(P) is linear along
all the isotherms and along the isobar 0GPa. This makes

it possible to evaluate the magnitude σ ′(P)T by the value

of B ′(P). However, along the isobars 50 and 100GPa this

dependence has a more complex form, as shown in the

insert of Figure 7, b.

Using the function σ (P, T ), it is possible to evaluate

dependences of the Poison’s ratio µP on the pressure and the

temperature. These dependences were calculated using the

formula obtained in the Ref. [46] and tested in the Ref. [47]:

µP(R, T ) =
1

2
−

1

48Xsc(R, T )[γ(R)]2
,
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wherein the function is introduced

Xsc(R, T ) =
σ (R, T )R

r0BT (R, T )
.

The inserts of Figure 7 shows the baric (Figure 7, a)
and temperature (Figure 7, b) dependences µP . The

temperature dependence µP for FCC-Rh when P = 0 was

experimentally studied in the Ref. [48] by two different

methods. The insert of Figure 7 shows results of the

study [48] by solid circles. Our isobar, P = 0, lies somewhat

higher than the values of the Ref. [48]. It can be seen

from the inserts of Figure 7 that µP linearly decreases with

isothermal increase of the pressure and linearly increases

with isobaric increase of the temperature.

3.7. Melting point

Using the interatomic potential parameters from (8) and

the method of the Ref. [25], the following values of the

parameters of the formula (7) were obtained for FCC-Rh

on the isotherm Tm(0) = 2236K when P = 0.

c
(

0, Tm(0)
)

= 2.75269 · 10−10 m,

2
(

0, Tm(0)
)

= 265.317K.
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Figure 8, a shows the baric dependences for the melting

point Tm(P) (in K), whereas Figure 8, b shows the baric

dependences of the derivative of the melting point with

respect to the pressure. T ′

m(P) = dTm/dP (in K/GPa).
The solid line marks our results. The function T ′

m(P)
was calculated by us by numerical differentiation of the

dependence Tm(P) with respect to the pressure. The dashed

lines show the results of calculations from the Ref. [9] (the
lower line) and the Ref. [14] (the upper line). The dots of

Figure 8, a show experimental results for FCC-Rh from the

Ref. [1].
The function Tm(P) was approximated in the Ref. [1] by

using the Simon−Glatzel equation of the following type:

Tm(P) = Tm0

[

1 +
P

P0

]cs

. (11)

The following parameters Tm0 = 2253K,

P0 = 7.22± 0.7GPa, cs = 1/(5 ± 1) were obtained

for FCC-Rh in the Ref. [1]. This dependence is shown in

Figure 8 by a thick dashdotted line. Thin dashdotted lines

above and under it mark the upper (when P0 = 6.52GPa,

cs = 1/4) and the lower (when P0 = 7.92GPa, cs = 1/6)
boundaries of this dependence. In the Ref. [14], the results

of calculations were FCC-Rh were also approximated

by the Eq. (11) with the parameters Tm0 = 2236K,

P0 = 21.8742 GPa, cs = 0.4891. In Figure 8, a, the

dependence of the Ref. [14] is shown by a dashed line that

lies above the calculations of the Ref. [9]. The right graph

shows the derivative of the dependence (11) with respect

to the pressure, which is calculated by the formula

T ′

m(P) =
dTm(P)

dP
= Tm0

cs

P0

[

1 +
P

P0

]cs−1

. (12)

In Figure 8, b, the functions T ′

m(P) were calculated by the

parameters provided in the Ref. [14]. It can be seen from

Figure 8 that our results for FCC-Rh well agree with the

results of the other authors.

3.8. Contribution by the electron subsystem to
the baric dependences

As shown in the Ref. [11], at the high temperatures, when

studying the FCC-Rh properties, it is also necessary to take

into account a contribution by thermally-excited electrons.

Then there is a question: how the baric and temperature

dependences presented herein will be changed when taking

into account the electron subsystem? When taking into

account the electron subsystem, it is necessary to include

the following summand into the specific free Helmholtz

energy [49–51]:

f el(v, T ) = −
χel

2NA

(

v

v0

)γel

T 2, (13)

where NA — the Avogadro’s number, χel — the coefficient of

electron heat capacity, which is determined from measure-

ments of the heat capacity at the low temperature, γel —
the electron Grüneisen parameter.

By assuming that the values of χel and γel do not depend

on the temperature and the specific volume, it is easy

to obtain expressions for additional contributions into the

crystal properties from (13). For molar isochoric heat

capacity, the equations of state and the isothermal elastic

modulus, these contributions are written as follows

Cv el(v, T ) = χel

(

v

v0

)γel

T, (14)

Pel(v, T ) = γel
χel

2NAv0

(

v

v0

)γel−1

T 2, (15)
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BT el(v, T ) = γel(1− γel)
χel

2NAv0

(

v

v0

)γel−1

T 2. (16)

The expressions (14) and (16) can be used to obtain

an expression for the volume thermal expansion coefficient

as [52]

αp el(v, T ) = γel
Cv el

V BT

= γel
χel

NAv0BT

(

v

v0

)γel−1

T. (17)

Several methods were proposed to determine γel. For

example, γel = 2/3 is obtained [49–51] from the model

of the perfect degenerate electron gas. γel = 1/2 is fol-

lowed [50,51] from the Thomas−Fermin model. The exper-

imental estimates done at the low temperatures from the re-

lationship [52]: γel=V BTαp el/Cv el, provided the following

value for FCC-Rh: γel(Rh)=2.8 > γ(Rh)T=0 K=1.9−2.0.

However, it can be seen from the expression (16) that when

γel > 1, then BT el < 0, thereby indicating instability of this

system. Therefore, in order to evaluate the contribution

by the electron subsystem to the dependences of the

FCC-Rh properties on the P−T -arguments we take that

γel=2/3.
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Figure 11. Baric dependence a) of the melting point Tm (the circles and the thin solid line mark the experimental results and the

calculations according to the Eg. (11) of the Ref. [1]) and b) of its derivative T ′

m(P) with respect to the temperature for FCC-Rh. The

solid line marks our results without taking into account the electron subsystem. The dashdotted lines show our results obtained taking

into account the electron subsystem. The dashed lines show the results of calculations from the Ref. [9] (lower) and the Ref. [14] (upper).

The measurements of heat capacity at the low tempera-

tures for FCC-Rh were taken to obtain [53] that χel(Rh) =
= 4.65± 0.018mJ/(mol · K2). Hence,

χel(Rh)T/(kBNA) = 0.56 · 10−3 T. (18)

Using the method of the Refs. [15,16] taking into account

the expressions (13)−(17) as well as using the potential

parameters from (8) and the value from (18) and γel = 2/3,

we have calculated the baric dependences of the FCC-Rh

properties along the isotherms 300 and 2000K.

The calculations have shown that of the studied

dependences the following properties are negligibly

changed: P(T, v), 2(T, P), γ(T, P), q(T, P), z (T, P) =
= −(∂ ln q/∂ ln v)T , BT (T, P), B ′(P) = (∂BT /∂P)T ,

σ (T, P), σ ′(T )v = (∂σ/∂T )v , σ
′(P) = (∂σ/∂P)T , 1p, µP .

There is also no change of the dependence of the derivative

of the specific surface energy with respect to the pressure

on the derivative of the elastic modulus with respect to the

pressure, which is shown in Figure 7. As shown in the

Figures 9 and 10, the isotherm 2000K has the following

functions noticeably changed: αp(T, P) = (∂ ln v/∂T )P ,

α′

p(P) = (∂αp/∂P)T , σ ′(T )P = (∂σ/∂T )P . At the same

time, as can be seen in Figure 9, a, the agreement of our

dependence αp(T = 2000K, P) with the calculations of

the Ref. [11] is improved. However, as can be seen from the

Figures 9 and 10, with increase of the pressure along the

isotherm 2000K the contribution by the electron subsystem

is reduced.

As can be seen from Figure 10, with taking into account

the electron contribution, the dependence σ ′(T )v is not

changed, whereas the values of |σ ′(T )P | somewhat increase

at the low pressures and the high temperatures. With

increase of the pressure, the influence of the electron

subsystem is reduced. The baric dependence of the melting

point has been calculated to show (Figure 11) that even at

the low pressures the contribution by the electron subsystem

is very small, and with increase of the pressure this

contribution disappears.

4. Conclusion

Within the framework of the analytical method, the

self-consistent method was used to calculate all the four

parameters of the Mie−Lennard-Jones for FCC-Rh. The

obtained potential parameters were used to calculate the

Debye temperature, the Grüneisen parameter, the equation

of state, the isothermal elastic modulus and the thermal

expansion coefficient of FCC-Rh. It is shown that the

calculated dependences well agree with the data that are

obtained both experimentally and by means of computer

simulation.

This is the first study that calculates for FCC-Rh the

baric dependences of the derivatives of the isothermal elastic

modulus: B ′(P) = (∂BT/∂P)T and the thermal expansion

coefficient with respect to the pressure: α′

p(P) = (∂αp/∂P)T

along the isotherms 300, 1000, 2000 K. It was shown that

the isotherms B ′(P) intersected each other in the point

P = 25GPa, B ′(P) = 6.13. It indicates that at this pressure

the function B ′(P) does not depend on the temperature.

It is for the first time that the FCC-Rh surface properties

are calculated at the different P−T -conditions: the specific

surface energy of the facet (100): σ (100), its derivatives

with respect to the temperature: σ ′(T )i = (∂σ/∂T )i (both
the isochoric one: i = v , and the isobaric one: i = P) and

the isothermal derivative of the function σ with respect to

the pressure: σ ′(P)T = (∂σ/∂P)T . We have obtained both

the baric dependences of the said functions along the three
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isotherms: 300, 1000, 2000K as well as the temperature

dependences along the three isobars: 0, 50, 100GPa.

We have also obtained the estimates for the FCC-Rh

fragmentation point at the various temperatures. It is shown

that the function σ ′(P)T for FCC-Rh linearly depends on

the value of the isothermal derivative of the elastic modulus

with respect to the pressure B ′(P). The obtained results

for the functions BT (P, T ) and σ (P, T ) were used to study

for the first time the dependences of the Poison’s ratio of

FCC-Rh on the pressure and the temperature.

And the obtained dependences were used to calculate the

baric dependences of the melting point and its derivative

with respect to the pressure for FCC-Rh. The good agree-

ment with the literature-known data is obtained.

The influence of the electron subsystem on the baric

dependences of the studied FCC-Rh properties is studied.

It is shown that of the studied dependences the following

properties are insignificantly changed: P(T, v), 2(T, P),
γ(T, P), q(T, P), z (T, P)=−(∂ ln q/∂ ln v)T , BT (T, P),
B ′(P)=(∂BT /∂P)T , σ (T, P), σ ′(T )v =(∂σ/∂T )v , σ

′(P)=
= (∂σ/∂P)T , 1p, the Poison’s ratio µP . At the high temper-

atures, the following dependences are noticeably changed:

αp(T, P)=(∂ ln v/∂T )P , α′

p(P)=(∂αp/∂P)T , σ ′(T )P =
= (∂σ/∂T )P . However, with increase of the pressure along

the isotherm the contribution by the electron subsystem is

reduced. Even at the low pressures, the contribution by the

electron subsystem to the baric dependence of the melting

point of FCC-Rh is very small, and with increase of the

pressure this contribution disappears.

Acknowledgments

The author wishes to thank S.P. Kramynin, K.N. Magome-

dov, Z.M. Surkhaeva and M.G. Yakh’yaev for fruitful

discussions and their help.

Funding

The study was supported by grant �25-23-00001 from

the Russian Science Foundation, https://rscf.ru/project/25-

23-00001.

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] H.M. Strong, F.P. Bundy. Phys. Rev. 115, 2, 278 (1959).
https://doi.org/10.1103/PhysRev.115.278

[2] S. Marsh. LASL Shock Hugoniot Data, v. 5. University

California Press, Berkeley (1980).
[3] E. Walker, J. Ashkenazi, M. Dacorogna. Phys. Rev. B 24, 4,

2254 (1981). https://doi.org/10.1103/physrevb.24.2254
[4] L.V. Al’tshuler, S.E. Brusnikin, E.A. Kuz’menkov. J. Appl.

Mech. Tech. Phys. 28, 1, 129 (1987).
https://doi.org/10.1007/BF00918785

[5] J.W. Arblaster. Platinum Metals Rev. 41, 4, 184 (1997).
https: //citeseerx.ist.psu.edu/document?repid=rep1&type=
pdf&doi=f01e89265db07a7910e2f79b9d2fe85544ae5b56

[6] G. Pan, C. Hu, P. Zhou, F. Wang, Z. Zheng, B. Liang. J. Mater.

Res. 29, 12, 1334 (2014).
https://doi.org/10.1557/jmr.2014.141

[7] P. Kumar, N.K. Bhatt, P.R. Vyas, V.B. Gohel. Eur. Phys. J. B 89,

10, 219 (2016). https://doi.org/10.1140/epjb/e2016-70367-0
[8] K.V. Yusenko, S. Khandarkhaeva, T. Fedotenko, A. Pakho-

mova, S.A. Gromilov, L. Dubrovinsky, N. Dubrovinskaia.

J. Alloys. Compd. 788, 212 (2019).
https://doi.org/10.1016/j.jallcom.2019.02.206

[9] N.A. Smirnov. J. Appl. Phys. 134, 2, 025901 (2023).
https://doi.org/10.1063/5.0158737

[10] M. Frost, D. Smith, E.E. McBride, J.S. Smith, S.H. Glenzer.

J. Appl. Phys. 134, 3, 035901 (2023).
https://doi.org/10.1063/5.0161038

[11] B. Thakur, X. Gong, A. Dal Corso. AIP Adv. 14, 4, 045229

(2024). https://doi.org/10.1063/5.0203098
[12] J.D. McHardy, C.V. Storm, M.J. Duff, C.M. Lonsdale,

G.A. Woolman, M.I. McMahon, N. Giordano, S.G. MacLeod.

Phys. Rev. B 109, 9, 094113 (2024).
https://doi.org/10.1103/PhysRevB.109.094113

[13] J.L. Rodrigo-Ramon, S. Anzellini, C. Cazorla, P. Botella,

A. Garcia-Beamud, J. Sanchez-Martin, G. Garbarino,

A.D. Rosa, S. Gallego-Parra, D. Errandonea. Sci. Rep. 14, 1,

26634 (2024). https://doi.org/10.1038/s41598-024-78006-0
[14] N.T. Tam, L.T. Lam, H.K. Hieu. Phys. Lett. A 547, 130450

(2025). https://doi.org/10.1016/j.physleta.2025.130450
[15] M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021).

https://doi.org/10.1134/S1063783421090250

[16] M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022).
https://doi.org/10.21883/PSS.2022.07.54579.319

[17] E.A. Moelwyn-Hughes. Physical Chemistry, Pergamon Press,

London (1961). 1333 p.
[18] L.A. Girifalco. Statistical Physics of Materials. J. Wiley & Sons

Ltd., New York (1973). 346 p.
[19] Y. Kraftmakher. Phys. Rep. 299, 2–3, 79 (1998).

https://doi.org/10.1016/S0370-1573(97)00082-3
[20] M.N. Magomedov. Tech. Phys 68, 2, 209 (2023).

https://doi.org/10.21883/TP.2023.02.55474.190-22

[21] M. Matsui. J. Phys: Conf. Ser. 215, 1, 012197 (2010).
https://doi.org/10.1088/1742-6596/215/1/012197

[22] X. Huang, F. Li, Q. Zhou, Y. Meng, K.D. Litasov, X. Wang,

B. Liu, T. Cui. Sci. Rep. 6, 19923 (2016).
https://doi.org/10.1038/srep19923

[23] A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. JETP 124, 3,

469 (2017).
https://doi.org/10.1134/S1063776117030049

[24] D.K. Belashchenko. Phys. — Uspekhi 63, 12, 1161 (2020).
https://doi.org/10.3367/UFNe.2020.01.038761

[25] M.N. Magomedov. Phys. Solid State 65, 5, 708 (2023).
https://doi.org/10.21883/PSS.2023.05.56040.46

[26] P. Janthon, S.(A) Luo, S.M. Kozlov, F. Viñes, J. Limtrakul,
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