Molecular dynamics study of mechanical properties of crystalline and amorphous nickel nanoparticles
Poletaev G. M.
1, Kovalenko V. V.
21Polzunov Altai State Technical University, Barnaul, Russia
2Siberian State Industrial University, Novokuznetsk, Russia
Email: gmpoletaev@mail.ru
The molecular dynamics method was used to study the compression deformation of nickel nanoparticles with crystalline and amorphous structures. It was shown that the strength of the nanoparticles increases with increasing deformation rate, and decreases with increasing temperature. Anisotropy of mechanical properties occurs during deformation of single-crystal nanoparticles. In particular, the compressive strength along the [111] and [110] directions was found to be approximately 30-40 % greater than the compressive strength along the [112] direction. As the size of the nanoparticles, both single-crystal and amorphous, decreased, their strength increased, and the value of deformation at which the maximum stress was achieved also increased. One of the possible reasons for the influence of particle size on its strength in the case of an amorphous structure may be compaction and partial crystallization of the structure near the points of load application. Keywords: molecular dynamics, nanoparticle, compression, deformation, amorphous structure.
- Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed. / Eds J.A. Schwarz, S.E. Lyshevski, C.I. Contescu). CRC Press, Boca Raton (2014). 4200 p
- C. Humbert, T. Noblet, L. Dalstein, B. Busson, G. Barbillon. Mater. 12, 5, 836 (2019). https://doi.org/10.3390/ma12050836
- Y. Mantri, J.V. Jokerst. ACS Nano 14, 8, 9408 (2020). https://doi.org/10.1021/acsnano.0c05215
- T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar. Mol. Pharm. 2, 3, 194 (2005). https://doi.org/10.1021/mp0500014
- S.-Y. Shim, D.-K. Lim, J.-M. Nam. Nanomedicine 3, 2, 215 (2008). https://doi.org/10.2217/17435889.3.2.215
- K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto. Nature Nanotechnol. 16, 2, 140 (2021). https://doi.org/10.1038/s41565-020-00824-w
- S. Mitchell, R. Qin, N. Zheng, J. Perez-Ramirez. Nature Nanotechnol. 16, 2, 129 (2021). https://doi.org/10.1038/s41565-020-00799-8
- C.E. Carlton, P.J. Ferreira. Micron 43, 11, 1134 (2012). https://doi.org/10.1016/j.micron.2012.03.002
- J. Deneen, W.M. Mook, A. Minor, W.W. Gerberich, C.B. Carter. J. Mater. Sci. 41, 14, 4477 (2006). https://doi.org/10.1007/s10853-006-0085-9
- W.W. Gerberich, W.M. Mook, C.R. Perrey, C.B. Carter, M.I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P.H. McMurry, S.L. Girshick. J. Mech. Phys. Solids 51, 6, 979 (2003). https://doi.org/10.1016/S0022-5096(03)00018-8
- D.D. Stauffer, A. Beaber, A. Wagner, O. Ugurlu, J. Nowak, K.A. Mkhoyan, S. Girshick, W. Gerberich. Acta Materialia 60, 6-7, 2471 (2012). https://doi.org/10.1016/j.actamat.2011.10.045
- M. Ramos, L. Ortiz-Jordan, A. Hurtado-Macias, S. Flores, J.T. Elizalde-Galindo, C. Rocha, B. Torres, M. Zarei-Chaleshtori, R.R. Chianelli. Mater. 6, 1, 198 (2013). https://doi.org/10.3390/ma6010198
- A. Sharma, J. Hickman, N. Gazit, E. Rabkin, Y. Mishin. Nature Commun. 9, 1, 4102 (2018). https://doi.org/10.1038/s41467-018-06575-6
- J. Bian, H. Zhang, X. Niu, G. Wang. Crystals 8, 3, 116 (2018). https://doi.org/10.3390/cryst8030116
- J.J. Bian, L. Yang, X.R. Niu, G.F. Wang. Phil. Mag. 98, 20, 1848 (2018). https://doi.org/10.1080/14786435.2018.1459059
- D. Mordehai, S.-W. Lee, B. Backes, D.J. Srolovitz, W.D. Nix, E. Rabkin. Acta Materialia 59, 13, 5202 (2011). https://doi.org/10.1016/j.actamat.2011.04.057
- W.-Z. Han, L. Huang, S. Ogata, H. Kimizuka, Z.-C. Yang, C. Weinberger, Q.-J. Li, B.-Y. Liu, X.-X. Zhang, J. Li, E. Ma, Z.-W. Shan. Adv. Mater. 27, 22, 3385 (2015). https://doi.org/10.1002/adma.201500377
- Y. Hong, N. Zhang, M.A. Zaeem. Acta Materialia 145, 8 (2018). https://doi.org/10.1016/j.actamat.2017.11.034
- J. Amodeo, L. Pizzagalli. Comptes Rendus. Physique, Plasticity \& Solid State Phys. 22, S3, 35 (2021). https://doi.org/10.5802/crphys.70
- Y. Feruz, D. Mordehai. Acta Materialia 103, 433 (2016). http://dx.doi.org/10.1016/j.actamat.2015.10.027
- D. Guo, G. Xie, J. Luo. J. Phys. D Appl. Phys. 47, 1, 013001 (2014). https://doi.org/10.1088/0022-3727/47/1/013001
- K.A. Krylova, L.R. Safina, R.T. Murzaev, S.A. Shcherbinin, Yu.A. Baimova, R.R. Mulyukov. FTT 65, 9, 1579 (2023). https://doi.org/10.21883/FTT.2023.09.56256.101 (in Russian)
- K.A. Krylova, L.R. Safina, R.T. Murzaev, J.A. Baimova, R.R. Mulyukov. Mater. 14, 11, 3087 (2021). https://doi.org/10.3390/ma14113087
- L.R. Safina, J.A. Baimova, R.R. Mulyukov. Mech. Adv. Mater. Mod. Processes 5, 1, 2 (2019). https://doi.org/10.1186/s40759-019-0042-3
- D. Kiener, A.M. Minor. Nano Lett. 11, 9, 3816 (2011). https://doi.org/10.1021/nl201890s
- F. Mompiou, M. Legros, A. Sedlmayr, D.S. Gianola, D. Caillard, O. Kraft. Acta Materialia 60, 3, 977 (2012). https://doi.org/10.1016/j.actamat.2011.11.005
- D.J. Dunstan, A.J. Bushby. Int. J. Plast. 40, 152 (2013). https://doi.org/10.1016/j.ijplas.2012.08.002
- P.S. Phani, K.E. Johanns, E.P. George, G.M. Pharr. Acta Materialia 61, 7, 2489 (2013). https://doi.org/10.1016/j.actamat.2013.01.023
- D. Kilymis, C. Gerard, L. Pizzagalli. TMS 2019 148th Annual Meeting \& Exhibition Supplem. Proceed. The Minerals, Metals \& Materials Series, 1347 (2019). https://doi.org/10.1007/978-3-030-05861-6_128
- H.K. Issa, A. Taherizadeh, A. Maleki. Ceram. Int. 46, 13, 21647 (2020). https://doi.org/10.1016/j.ceramint.2020.05.272
- J. Zhao, S. Nagao, G.M. Odegard, Z. Zhang, H. Kristiansen, J. He. Nanoscale Res. Lett. 8, 1, 541 (2013). https://doi.org/10.1186/1556-276X-8-541
- A.R. Beaber, J.D. Nowak, O. Ugurlu, W.M. Mook, S.L. Girshick, R. Ballarini, W.W. Gerberich. Phil. Mag. 91, 7-9, 1179 (2011). https://doi.org/10.1080/14786435.2010.487474
- J. Sun, L. He, Y.C. Lo, T. Xu, H. Bi, L. Sun, Z. Zhang, S.X. Mao, J. Li. Nature Mater. 13, 11, 1007 (2014). https://doi.org/10.1038/nmat4105
- I. Issa, J. Amodeo, J. Rethore, L. Joly-Pottuz, C. Esnouf, J. Morthomas, M. Perez, J. Chevalier, K. Masenelli-Varlot. Acta Materialia 86, 295 (2015). https://doi.org/10.1016/j.actamat.2014.12.001
- W.M. Mook, J.D. Nowak, C.R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P.H. McMurry, W.W. Gerberich. Phys. Rev. B 75, 21, 214112 (2007). https://doi.org/10.1103/PhysRevB.75.214112
- W.W. Gerberich, D.D. Stauffer, A.R. Beaber, N.I. Tymiak. J. Mater. Res. 27, 3, 552 (2012). https://doi.org/10.1557/jmr.2011.348
- S.-X. Liang, L.-C. Zhang, S. Reichenberger, S. Barcikowski. Phys. Chem. Chem. Phys. 23, 19, 11121 (2021). https://doi.org/10.1039/D1CP00701G
- J. Sun, S.K. Sinha, A. Khammari, M. Picher, M. Terrones, F. Banhart. Carbon 161, 495 (2020). https://doi.org/10.1016/j.carbon.2020.01.067
- Y. Qian, A. da Silva, E. Yu, C.L. Anderson, Y. Liu, W. Theis, P. Ercius, T. Xu. Nature Commun. 12, 1, 2767 (2021). https://doi.org/10.1038/s41467-021-22950-2
- Y. Pei, G. Zhou, N. Luan, B. Zong, M. Qiao, F. Tao. Chem. Soc. Rev. 41, 24, 8140 (2012). https://doi.org/10.1039/c2cs35182j
- Z. Jia, Q. Wang, L. Sun, Q. Wang, L.-C. Zhang, G. Wu, J.-H. Luan, Z.-B. Jiao, A. Wang, S.-X. Liang, M. Gu, J. Lu. Adv. Funct. Mater. 29, 19, 1807857 (2019). https://doi.org/10.1002/adfm.201807857
- Q. Chen, Z. Yan, L. Guo, H. Zhang, L.-C. Zhang, W. Wang. J. Mol. Liq. 318, 114318 (2020). https://doi.org/10.1016/j.molliq.2020.114318
- A.M. Goryaeva, C. Fusco, M. Bugnet, J. Amodeo. Phys. Rev. Mater. 3, 3, 033606 (2019). https://doi.org/10.1103/PhysRevMaterials.3.033606
- G.P. Purja Pun, Y. Mishin. Phil. Mag. 89, 34-36, 3245 (2009). https://doi.org/10.1080/14786430903258184
- E.V. Levchenko, T. Ahmed, A.V. Evteev. Acta Materialia 136, 74 (2017). https://doi.org/10.1016/j.actamat.2017.06.056
- G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov, M.D. Starostenkov. Lett. Mater. 11, 4, 438 (2021). https://doi.org/10.22226/2410-3535-2021-4-438-441
- G.M. Poletaev, D.V. Dmitrienko, V.V. Diabdenkov, V.R. Mikrukov, M.D. Starostenkov. Phys. Solid State 55, 9, 1920 (2013). https://doi.org/10.1134/S1063783413090254
- G.M. Poletaev, Y.Y. Gafner, S.L. Gafner. Lett. Mater. 13, 4, 298 (2023). https://doi.org/10.22226/2410-3535-2023-4-420-425
- G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov. Mater. Chem. Phys. 309, 128358 (2023). https://doi.org/10.1016/j.matchemphys.2023.128358
- J.M. Montejano-Carrizales, M.P. In iguez, J.A. Alonso. J. Cluster Sci. 5, 2, 287 (1994). https://doi.org/10.1007/BF01170713
- F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet. J. Chem. Phys. 116, 9, 3856 (2002). https://doi.org/10.1063/1.1448484
- A. Tilocca. J. Chem. Phys. 139, 11, 114501 (2013). https://doi.org/10.1063/1.4821150
- A.D. Evstifeev, A.A. Gruzdkov, Y.V. Petrov. Tech. Phys. 58, 7, 989 (2013). https://doi.org/10.1134/S1063784213070086
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.