Physics of the Solid State
Volumes and Issues
Molecular dynamics study of mechanical properties of crystalline and amorphous nickel nanoparticles
Poletaev G. M. 1, Kovalenko V. V. 2
1Polzunov Altai State Technical University, Barnaul, Russia
2Siberian State Industrial University, Novokuznetsk, Russia
Email: gmpoletaev@mail.ru

PDF
The molecular dynamics method was used to study the compression deformation of nickel nanoparticles with crystalline and amorphous structures. It was shown that the strength of the nanoparticles increases with increasing deformation rate, and decreases with increasing temperature. Anisotropy of mechanical properties occurs during deformation of single-crystal nanoparticles. In particular, the compressive strength along the [111] and [110] directions was found to be approximately 30-40 % greater than the compressive strength along the [112] direction. As the size of the nanoparticles, both single-crystal and amorphous, decreased, their strength increased, and the value of deformation at which the maximum stress was achieved also increased. One of the possible reasons for the influence of particle size on its strength in the case of an amorphous structure may be compaction and partial crystallization of the structure near the points of load application. Keywords: molecular dynamics, nanoparticle, compression, deformation, amorphous structure.
  1. Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed. / Eds J.A. Schwarz, S.E. Lyshevski, C.I. Contescu). CRC Press, Boca Raton (2014). 4200 p
  2. C. Humbert, T. Noblet, L. Dalstein, B. Busson, G. Barbillon. Mater. 12, 5, 836 (2019). https://doi.org/10.3390/ma12050836
  3. Y. Mantri, J.V. Jokerst. ACS Nano 14, 8, 9408 (2020). https://doi.org/10.1021/acsnano.0c05215
  4. T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar. Mol. Pharm. 2, 3, 194 (2005). https://doi.org/10.1021/mp0500014
  5. S.-Y. Shim, D.-K. Lim, J.-M. Nam. Nanomedicine 3, 2, 215 (2008). https://doi.org/10.2217/17435889.3.2.215
  6. K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto. Nature Nanotechnol. 16, 2, 140 (2021). https://doi.org/10.1038/s41565-020-00824-w
  7. S. Mitchell, R. Qin, N. Zheng, J. Perez-Ramirez. Nature Nanotechnol. 16, 2, 129 (2021). https://doi.org/10.1038/s41565-020-00799-8
  8. C.E. Carlton, P.J. Ferreira. Micron 43, 11, 1134 (2012). https://doi.org/10.1016/j.micron.2012.03.002
  9. J. Deneen, W.M. Mook, A. Minor, W.W. Gerberich, C.B. Carter. J. Mater. Sci. 41, 14, 4477 (2006). https://doi.org/10.1007/s10853-006-0085-9
  10. W.W. Gerberich, W.M. Mook, C.R. Perrey, C.B. Carter, M.I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P.H. McMurry, S.L. Girshick. J. Mech. Phys. Solids 51, 6, 979 (2003). https://doi.org/10.1016/S0022-5096(03)00018-8
  11. D.D. Stauffer, A. Beaber, A. Wagner, O. Ugurlu, J. Nowak, K.A. Mkhoyan, S. Girshick, W. Gerberich. Acta Materialia 60, 6-7, 2471 (2012). https://doi.org/10.1016/j.actamat.2011.10.045
  12. M. Ramos, L. Ortiz-Jordan, A. Hurtado-Macias, S. Flores, J.T. Elizalde-Galindo, C. Rocha, B. Torres, M. Zarei-Chaleshtori, R.R. Chianelli. Mater. 6, 1, 198 (2013). https://doi.org/10.3390/ma6010198
  13. A. Sharma, J. Hickman, N. Gazit, E. Rabkin, Y. Mishin. Nature Commun. 9, 1, 4102 (2018). https://doi.org/10.1038/s41467-018-06575-6
  14. J. Bian, H. Zhang, X. Niu, G. Wang. Crystals 8, 3, 116 (2018). https://doi.org/10.3390/cryst8030116
  15. J.J. Bian, L. Yang, X.R. Niu, G.F. Wang. Phil. Mag. 98, 20, 1848 (2018). https://doi.org/10.1080/14786435.2018.1459059
  16. D. Mordehai, S.-W. Lee, B. Backes, D.J. Srolovitz, W.D. Nix, E. Rabkin. Acta Materialia 59, 13, 5202 (2011). https://doi.org/10.1016/j.actamat.2011.04.057
  17. W.-Z. Han, L. Huang, S. Ogata, H. Kimizuka, Z.-C. Yang, C. Weinberger, Q.-J. Li, B.-Y. Liu, X.-X. Zhang, J. Li, E. Ma, Z.-W. Shan. Adv. Mater. 27, 22, 3385 (2015). https://doi.org/10.1002/adma.201500377
  18. Y. Hong, N. Zhang, M.A. Zaeem. Acta Materialia 145, 8 (2018). https://doi.org/10.1016/j.actamat.2017.11.034
  19. J. Amodeo, L. Pizzagalli. Comptes Rendus. Physique, Plasticity \& Solid State Phys. 22, S3, 35 (2021). https://doi.org/10.5802/crphys.70
  20. Y. Feruz, D. Mordehai. Acta Materialia 103, 433 (2016). http://dx.doi.org/10.1016/j.actamat.2015.10.027
  21. D. Guo, G. Xie, J. Luo. J. Phys. D Appl. Phys. 47, 1, 013001 (2014). https://doi.org/10.1088/0022-3727/47/1/013001
  22. K.A. Krylova, L.R. Safina, R.T. Murzaev, S.A. Shcherbinin, Yu.A. Baimova, R.R. Mulyukov. FTT 65, 9, 1579 (2023). https://doi.org/10.21883/FTT.2023.09.56256.101 (in Russian)
  23. K.A. Krylova, L.R. Safina, R.T. Murzaev, J.A. Baimova, R.R. Mulyukov. Mater. 14, 11, 3087 (2021). https://doi.org/10.3390/ma14113087
  24. L.R. Safina, J.A. Baimova, R.R. Mulyukov. Mech. Adv. Mater. Mod. Processes 5, 1, 2 (2019). https://doi.org/10.1186/s40759-019-0042-3
  25. D. Kiener, A.M. Minor. Nano Lett. 11, 9, 3816 (2011). https://doi.org/10.1021/nl201890s
  26. F. Mompiou, M. Legros, A. Sedlmayr, D.S. Gianola, D. Caillard, O. Kraft. Acta Materialia 60, 3, 977 (2012). https://doi.org/10.1016/j.actamat.2011.11.005
  27. D.J. Dunstan, A.J. Bushby. Int. J. Plast. 40, 152 (2013). https://doi.org/10.1016/j.ijplas.2012.08.002
  28. P.S. Phani, K.E. Johanns, E.P. George, G.M. Pharr. Acta Materialia 61, 7, 2489 (2013). https://doi.org/10.1016/j.actamat.2013.01.023
  29. D. Kilymis, C. Gerard, L. Pizzagalli. TMS 2019 148th Annual Meeting \& Exhibition Supplem. Proceed. The Minerals, Metals \& Materials Series, 1347 (2019). https://doi.org/10.1007/978-3-030-05861-6_128
  30. H.K. Issa, A. Taherizadeh, A. Maleki. Ceram. Int. 46, 13, 21647 (2020). https://doi.org/10.1016/j.ceramint.2020.05.272
  31. J. Zhao, S. Nagao, G.M. Odegard, Z. Zhang, H. Kristiansen, J. He. Nanoscale Res. Lett. 8, 1, 541 (2013). https://doi.org/10.1186/1556-276X-8-541
  32. A.R. Beaber, J.D. Nowak, O. Ugurlu, W.M. Mook, S.L. Girshick, R. Ballarini, W.W. Gerberich. Phil. Mag. 91, 7-9, 1179 (2011). https://doi.org/10.1080/14786435.2010.487474
  33. J. Sun, L. He, Y.C. Lo, T. Xu, H. Bi, L. Sun, Z. Zhang, S.X. Mao, J. Li. Nature Mater. 13, 11, 1007 (2014). https://doi.org/10.1038/nmat4105
  34. I. Issa, J. Amodeo, J. Rethore, L. Joly-Pottuz, C. Esnouf, J. Morthomas, M. Perez, J. Chevalier, K. Masenelli-Varlot. Acta Materialia 86, 295 (2015). https://doi.org/10.1016/j.actamat.2014.12.001
  35. W.M. Mook, J.D. Nowak, C.R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P.H. McMurry, W.W. Gerberich. Phys. Rev. B 75, 21, 214112 (2007). https://doi.org/10.1103/PhysRevB.75.214112
  36. W.W. Gerberich, D.D. Stauffer, A.R. Beaber, N.I. Tymiak. J. Mater. Res. 27, 3, 552 (2012). https://doi.org/10.1557/jmr.2011.348
  37. S.-X. Liang, L.-C. Zhang, S. Reichenberger, S. Barcikowski. Phys. Chem. Chem. Phys. 23, 19, 11121 (2021). https://doi.org/10.1039/D1CP00701G
  38. J. Sun, S.K. Sinha, A. Khammari, M. Picher, M. Terrones, F. Banhart. Carbon 161, 495 (2020). https://doi.org/10.1016/j.carbon.2020.01.067
  39. Y. Qian, A. da Silva, E. Yu, C.L. Anderson, Y. Liu, W. Theis, P. Ercius, T. Xu. Nature Commun. 12, 1, 2767 (2021). https://doi.org/10.1038/s41467-021-22950-2
  40. Y. Pei, G. Zhou, N. Luan, B. Zong, M. Qiao, F. Tao. Chem. Soc. Rev. 41, 24, 8140 (2012). https://doi.org/10.1039/c2cs35182j
  41. Z. Jia, Q. Wang, L. Sun, Q. Wang, L.-C. Zhang, G. Wu, J.-H. Luan, Z.-B. Jiao, A. Wang, S.-X. Liang, M. Gu, J. Lu. Adv. Funct. Mater. 29, 19, 1807857 (2019). https://doi.org/10.1002/adfm.201807857
  42. Q. Chen, Z. Yan, L. Guo, H. Zhang, L.-C. Zhang, W. Wang. J. Mol. Liq. 318, 114318 (2020). https://doi.org/10.1016/j.molliq.2020.114318
  43. A.M. Goryaeva, C. Fusco, M. Bugnet, J. Amodeo. Phys. Rev. Mater. 3, 3, 033606 (2019). https://doi.org/10.1103/PhysRevMaterials.3.033606
  44. G.P. Purja Pun, Y. Mishin. Phil. Mag. 89, 34-36, 3245 (2009). https://doi.org/10.1080/14786430903258184
  45. E.V. Levchenko, T. Ahmed, A.V. Evteev. Acta Materialia 136, 74 (2017). https://doi.org/10.1016/j.actamat.2017.06.056
  46. G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov, M.D. Starostenkov. Lett. Mater. 11, 4, 438 (2021). https://doi.org/10.22226/2410-3535-2021-4-438-441
  47. G.M. Poletaev, D.V. Dmitrienko, V.V. Diabdenkov, V.R. Mikrukov, M.D. Starostenkov. Phys. Solid State 55, 9, 1920 (2013). https://doi.org/10.1134/S1063783413090254
  48. G.M. Poletaev, Y.Y. Gafner, S.L. Gafner. Lett. Mater. 13, 4, 298 (2023). https://doi.org/10.22226/2410-3535-2023-4-420-425
  49. G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov. Mater. Chem. Phys. 309, 128358 (2023). https://doi.org/10.1016/j.matchemphys.2023.128358
  50. J.M. Montejano-Carrizales, M.P. In iguez, J.A. Alonso. J. Cluster Sci. 5, 2, 287 (1994). https://doi.org/10.1007/BF01170713
  51. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet. J. Chem. Phys. 116, 9, 3856 (2002). https://doi.org/10.1063/1.1448484
  52. A. Tilocca. J. Chem. Phys. 139, 11, 114501 (2013). https://doi.org/10.1063/1.4821150
  53. A.D. Evstifeev, A.A. Gruzdkov, Y.V. Petrov. Tech. Phys. 58, 7, 989 (2013). https://doi.org/10.1134/S1063784213070086

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru