The influence of the exposed electrode material on the development of surface barrier discharge in air
I. Selivonin1, A. Lazukin2, I. Moralev1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
2National Research University «Moscow Power Engineering Institute», Moscow, Russia
Email: inock691@ya.ru
The aim of this work is to study the influence of the exposed electrode material on the dynamics of the surface dielectric barrier discharge characteristics during its long-term operation. A comparison of the structure and dynamics of the discharge power during continuous operation for 200 min on electrodes made of copper, nickel, molybdenum and aluminum was carried out. The discharge on copper and nickel electrodes has a high degree of non-uniformity along the electrode span. In the case of aluminum and molybdenum electrodes, the discharge looks like a diffuse glow region. During long-term operation of the discharge on copper and molybdenum electrodes, a noticeable increase in the power dissipated in the discharge is observed, while in the case of nickel and aluminum electrodes, it decreases. The reason for the different behavior of the electrodes during modification in the discharge is the binding energy of the oxides and their electrical conductivity. Keywords: gas discharge, barrier discharge, electrode modification, electrode durability.
- U. Kogelschatz, B. Eliasson, W. Egli. J. PHYS IV Fr., 7, 4 (1997). DOI: 10.1051/jp4:1997405
- R. Brandenburg. Plasma Sources Sci. Technol., 26 (5), 053001 (2017). DOI: 10.1088/1361-6595/aa6426
- V.I. Gibalov, G.J. Pietsch. J. Phys. D. Appl. Phys., 33 (20), 2618 (2000). DOI: 10.1088/0022-3727/33/20/315
- N. Bednar, J. Matovic, G. Stojanovic. J. Electrostat., 71, 1068 (2013). DOI: 10.1016/j.elstat.2013.10.010
- J. Mikevs, S. Pekarek, I. Soukup. J. Appl. Phys., 120, 173301 (2016). DOI: 10.1063/1.4966603
- Y. Park, S.K. Oh, J. Oh, D.C. Seok, S.B. Kim, S.J. Yoo, M.-J. Lee, C.Y. Park. Plasma Process Polym., 15 (2), 1 (2016). DOI: 10.1002/ppap.201600056
- A.V. Lazukin, Y.A. Serdyukov, I.A. Moralev, I.V. Selivonin, S.A. Krivov. J. Phys. Conf. Ser., 1147 (1), 012124 (2019). DOI: 10.1088/1742-6596/1147/1/012124
- E.J. Moreau. Phys. D. Appl. Phys., 40 (3), 605 (2007). DOI: 10.1088/0022-3727/40/3/S01
- T.C. Corke, E.J. Jumper, M.L. Post, D. Orlov, T.E. McLaughlin. 40th AIAA Aerosp. Sci. Meet. Exhib.(c), (2002). DOI: 10.2514/6.2002-350
- L. Bonova, A. Zahoranova, D. Kovavcik, M. Zahoran, M. Mivcuvsi k, M. vCernak. Appl. Surf. Sci., 331, 79 (2015). DOI: 10.1016/j.apsusc.2015.01.030
- D. Minzari, P. M ller, P. Kingshott, L.H. Christensen, R. Ambat. Corros. Sci., 50 (5), 1321 (2008). DOI: 10.1016/j.corsci.2008.01.023
- G. Borcia, C.A. Anderson, N.M.D. Brown. Plasma Sources Sci. Technol., 12 (3), 335 (2003). DOI: 10.1088/0963-0252/12/3/306
- K.G. Donohoe, T.J. Wydeven. Appl. Polym. Sci., 23 (9), 2591 (1979). DOI: 10.1002/app.1979.070230905
- D.J. Upadhyay, N.Y. Cui, C.A. Anderson, N.M.D. Brown. Appl. Surf. Sci., 229, 352 (2004). DOI: 10.1016/j.apsusc.2004.02.012
- R. Brandenburg. Plasma Sources Sci. Technol., 26 (5), 053001 (2017). DOI: 10.1088/1361-6595/aa6426
- T. Hoder, P. Synek, J. Vorac. Plasma Sources Sci. Technol., 28 (10), 105016 (2019). DOI: 10.1088/1361-6595/ab4b91
- I.V. Selivonin, I.A. Moralev. Plasma Sources Sci. Technol., 30 (3), 035005 (2021). DOI: 10.1088/1361-6595/abe0a1
- M. vSimor, J. Ra hel', P. Vojtek, M. vCernak, A. Brablec. Appl. Phys. Lett., 81 (15), 2716 (2002). DOI: 10.1063/1.1513185
- J. Pons, L. Oukacine, E. Moreau, J.M. Tatibouet. IEEE Trans. Plasma Sci., 36 (4), 1342 (2008). DOI: 10.1109/TPS.2008.926856
- A.R.H. Rigit, K.C. La, D.B.L. Bong. Proc. IEEE Int. Conf. Prop. Appl. Dielectr. Mater., 569 (2009). DOI: 10.1109/ICPADM.2009.5252365
- R.E. Hanson, J. Kimelman, N.M. Houser, P. Lavoie. 51st AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo. 2013 (January), 1 (2013). DOI: 10.2514/6.2013-397
- W. Changquan, H. Xiangning. Appl. Surf. Sci., 253 (2), 926 (2006). DOI: 10.1016/J.APSUSC.2006.01.032
- E. Pescini, M.G. De Giorgi, L. Francioso, A. Taurino, M.C. Martucci, Ph. Lavoie. 54th AIAA Aerosp. Sci. Meet. (January), 1 (2016). DOI: 10.2514/6.2016-0196
- I. Selivonin, A. Lazukin, I. Moralev, S. Krivov, I.J. Roslyakov. Phys. Conf. Ser., 1394, 012027 (2019). DOI: 10.1088/1742-6596/1394/1/012027
- I.V.Selivonin, A.V. Lazukin, I.A. Moralev, S.A. Krivov. Plasma Sources Sci. Technol., 27 (8), 085003 (2018). DOI: 10.1088/1361-6595/aacbf5
- A.V. Lazukin, I.V. Selivonin, I.A. Moralev, S.A. Krivov. J. Phys. Conf. Ser., 927, 012028 (2017). DOI: 10.1088/1742-6596/927/1/012028
- I. Selivonin, I. Moralev. J. Phys. Conf. Ser., 2100, 012014 (2021). DOI: 10.1088/1742-6596/2100/1/012014
- N.M. Houser, L. Gimeno, R.E. Hanson, T. Goldhawk, T. Simpson, P. Lavoie. Sensors Actuators A. Phys., 201, 101 (2013). DOI: 10.1016/j.sna.2013.06.005
- I.V. Selivonin, S.E. Kuvardin, I.A. Moralev. Bestnik OIVT RAN, 11, 4 (2023) (in Russian)
- X. Yao, N. Jiang, B. Peng, Y. Xia, N. Lu, K. Shang, J. Li, Y. Wu. Vacuum, 166, 114 (2019). DOI: 10.1016/j.vacuum.2019.04.035
- M. vCernak, T. Hosokawa, S. Kobayashi, T.J. Kaneda. Appl. Phys., 83 (11), 5678 (1998). DOI: 10.1063/1.367422
- P.P. Budenstein, P.J. Hayes. J. Appl. Phys., 38 (7), 2837 (1967). DOI: 10.1063/1.1710011
- G.V. Samsonov Physiko-khimicheskie svoystva okislov (Metallurgiya, M., 1978) (in Russian)
- J. Kriegseis, B. Moller, S. Grundmann, C. Tropea. J. Electrostat., 69 (4), 302 (2011). DOI: 10.1016/j.elstat.2011.04.007
- M.A. Aronov, V.P. Larionov (red.) Elektricheskaya izolyaciya vysokochastotnyh ustanovok vysokogo napryazheniya (AO "Znak", M., 1994) (in Russian)
- J. Kriegseis, S. Grundmann, C. Tropea. J. Appl. Phys., 110, 013305 (2011). DOI: 10.1063/1.3603030
- N.Y. Lysov. Elektrichestvo, 10, 28 (2016) (in Russian)
- M.M. Pashin, N.Y. Lysov. Elektrichestvo, 12, 21 (2011) (in Russian)
- I.V. Selivonin. Vliyanie degradacii koroniruyushchego elektroda na harakteristiki poverhnostnogo bar'ernogo razryada (Kand. diss. 1.3.9., M., 2022), p. 162 (in Russian)
- F. Massines, G. Gouda. J. Phys. D. Appl. Phys., 31 (24), 3411 (1998). DOI: 10.1088/0022-3727/31/24/003
- H.E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel, J.F. Behnke. Vacuum, 71 (3 SPEC.), 417 (2003). DOI: 10.1016/S0042-207X(02)00765-0
- I. Moralev, V. Bityurin, A. Firsov, V. Sherbakova, I. Selivonin, M. Ustinov. Proc IMechE Part G J. Aerosp. Eng., 234 (1), 42 (2020). DOI: 10.1177/0954410018796988
- V.R. Soloviev, I.V. Selivonin, I.A. Moralev. Phys. Plasmas, 24, 103528 (2017). DOI: 10.1063/1.5001136
- R. Berish. Raspylenie tverdyh tel ionnoj bombardirovkoj (Mir, M., 1984), v. I. (in Russian)
- N.V. Pleshivcev. Katodnoe raspylenie (Atomizdat, M., 1968) (in Russian)
- R. Berish. Raspylenie tverdyh tel ionnoj bombardirovkoj (Mir, M., 1986), v. II. (in Russian)
- S. Izman, M.R. Abdul-Kadir, M. Anwar, E.M. Nazim, R. Rosliza, A. Shah, M.A. Hassan. Titanium Alloys --- Towards Achieving Enhanced Properties for Diversified Applications (IntechOpen, 2012), DOI: 10.5772/1928
- L. Ben-Dor, Y. Shimoni. Mater. Res. Bull., 9 (6), 499 (1974). DOI: 10.1016/0025-5408(74)90120-2
- R.B. Bennie, C. Joel, A.N.P. Raj, A.J. Antony, S.I. Pillai. J. Solid State Electrochem., 27 (1), 271 (2023). DOI: 10.1007/s10008-022-05319-3
- S.A. Kozyukhin, S.A. Bedin, P.G. Rudakovskaya, O.S. Ivanova, V.K. Ivanov. FTP, 52 (7), 745 (2018) (in Russian). DOI: 10.21883/ftp.2018.07.46046.8719
- G.A. Mesyats. UFN, 165 (6), 601 (1995) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.