Simulation of thermally induced deformations of silicon mirrors of synchrotron radiation sources
Naumkin V.S. 1,2, Gorbachev M. V. 2
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
Email: vsnaumkin@itp.nsc.ru, m.gorbachev@corp.nstu.ru

PDF
The results of numerical modeling of the thermally deformed state of a silicon mirror reflecting a synchrotron radiation beam are presented. It is shown that when estimating temperature fields at low coolant flow rates (low heat transfer coefficients), it is necessary to take into account the effect of the radiator. It is shown that under the studied conditions, a smart-cut under the cooling radiator can reduce the magnitude of absolute deformations by almost an order of magnitude, compared to a mirror without one. The results can be useful in designing multilayer mirror optics at undulator stations of new sources such as MAX IV, ESRF EBS, and the SKIF "Center for Collective Use". Keywords: numerical simulation, high heat flux densities, strained state, cooling of synchrotron equipment.
  1. L.-M. Jin, W.-Q. Zhu, Y. Wang, N.-X. Wang, J.-F. Cao, Z.-M. Xu. Nucl. Instrum. Methods Phys. Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 902, 190 (2018). DOI: 10.1016/j.nima.2018.06.015
  2. R.L. Headrick, K.W. Smolenski, A. Kazimirov, C. Liu, A.T. Macrander Rev. Scientific Instrum., 73 (3), 1476 (2002). DOI: 10.1063/1.1435819
  3. P. Hu, H. Zhu, C. He. Appl. Thermal Eng., 73 (1), 598 (2014). DOI: 10.1016/j.applthermaleng.2014.07.052
  4. A.M. Khounsary. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation (Denver, CO, USA, 1999), p. 10. DOI: 10.1117/12.370114
  5. Y. Li, A. Khounsary, J. Maser, S. Nair. Proceed. SPIE The International Society for Optical Engineering (2004), p. 8
  6. A. Khounsary. J. Maser. Nucl. Instrum. Methods Phys. Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467-468, 654 (2001). DOI: 10.1016/S0168-9002(01)00438-7
  7. J. Stimson. Dissertation Submitted for the Degree of Philosophiae Doctor (PhD), (Birmingham, (2018), p. 265
  8. G. Maro, M. Rossat, A. Froind, S. Yoksh, H. Kavata, L. Chzhan, E. Tsigler, L. Berman, D. Chapman, J.B. Gastings, M. Iarocci. Rev. Scientific Instrum., 63 (1), 477 (1992). DOI: 10.1063/1.1142736
  9. D. Pauschinger, K. Becker, R. Ludewig. Rev. Scientific Instrum., 66 (2), 2177 (1995). DOI: 10.1063/1.1145697
  10. Y.R. Jaski, M. Meron, P.J. Viccaro. SPIE's International Symposium on Optical Science, Engineering, and Instrumentation (San Diego, 1998), p. 62-71. DOI: 10.1117/12.331118
  11. A. Khounsary, W. Yun, I. McNulty, Z. Cai, B. Lai. SPIE Conference on Advances in Mirror Technology for Synchrotron X-Ray and Laser Applications, 3447, 11 (1998)
  12. P. Marion, L. Zhang, L. Goirand, M. Rossat, K. Martel. Proc. MEDSI (Hyogo, Japan, 2006), p. 8
  13. L. Zhang, M. Sanchez del Ri o, G. Monaco, C. Detlefs, Th. Roth, A.I. Chumakova, P. Glatzel. J. Synchrotron Rad., 20 (4), 567 (2013). DOI: 10.1107/S0909049513009436
  14. X. Cheng, L. Zhang, C. Morawe, M. Sanchez del Rio. J. Synchrotron Rad., 22 (2), 317 (2015). DOI: 10.1107/S1600577514026009
  15. M.A. Antimonov, A.M. Khounsary, A.R. Sandy, S. Narayanan, G. Navrotski Nucl. Instrum. Methods Phys. Res. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 820, 164 (2016). DOI: 10.1016/j.nima.2016.02.103
  16. B.S. Petukhov, V.A. Alekseev, Yu.A. Zeigarnik, etc., TVT, (in Russian) 23 (6), 1200 (1985)
  17. P. Brumund, J. Reyes-Herrera, Ch. Morawe, Th. Dufrane, H. Isern, Th. Brochard, M. Sanchez del Ri o, C. Detlefs. J. Synchrotron Rad., 28 (5), 1423 (2021). DOI: 10.1107/S160057752100758X
  18. P. Oberta, V. Avc, J. Hrdy. J. Synchrotron Rad., 15 (1), 8 (2008). DOI: 10.1107/S0909049507044858
  19. H. Kawata, M. Sato, Y. Higashi, H. Yamaoka, J. Synchrotron Rad, 5 (3), 673 (1998). DOI: 10.1107/S0909049597020268
  20. W.K. Lee, P.B. Fernandez, A.M. Khounsary, W. Yun, E.M. Trakhtenberg. Optical Science, Engineering and Instrumentation '97 (San Diego, 1997), p. 208-215. DOI: 10.1117/12.294480
  21. S. Joksch, G. Marot, A. Freund, M. Krisch. Nucl. Instrum. Methods Phys. Res. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 306 (1-2), 386 (1991). DOI: 10.1016/0168-9002(91)90345-Q
  22. A.I. Chumakov, I. Sergeev, J.-Ph. Celse, R. Ruffer, M. Lesourd, L. Zhang, M. Sanchez del Ri o. J. Synchrotron Rad., 21 (2), 315 (2014). DOI: 10.1107/S1600577513033158
  23. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, T.Y.R. Lee. Termal expansion. Nonmetallic solids, 13. in Thermophysical Properties of Matter, 13, (1977)
  24. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens. Thermophysical properties of matter (Boston, MA: Springer US, 1970), v. 1. DOI: 10.1007/978-1-4615-9600-4

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru