Physics of the Solid State
Volumes and Issues
Cobalt and nickel nanowires: dependence of structure and magnetic properties on conditions of production and ion irradiation
Zagorskiy D.L. 1, Makarin R.A.2,3, Perov N.S. 2, Shalomov K. V. 4, Doludenko I.M. 1, Ovchinnikov V.V. 4, Gushchina N.V. 4, Panov D.V. 1,5
1National Research Center “Kurchatov Institute”, Moscow, Russia
2Moscow State University, Moscow, Russia
3MIREA - Russian Technological University, Moscow, Russia
4Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
5Moscow State University of Education, Moscow, Russia
Email: dzagorskiy@gmail.com, perov@physics.msu.ru, icsartf@gmail.com, idoludenko@mail.ru, viae05@mail.ru, guscha@rambler.ru, dvpanov@edu.hse.ru

PDF
Arrays of nanowires (NWs) with a diameter of 100 nm from Ni and Co have been obtained by matrix synthesis. Nickel samples were obtained at different temperatures of the electrolyte solution, and cobalt samples were obtained at different pH values. The magnetic properties were investigated by vibrational magnetometry. A multiple increase in saturation magnetization and coercive force was found for Ni-NWs with an increase in the electrodeposition temperature from 20 to 60 oC. A change in the pH of the cobalt electrolyte from 3 to 5 leads to a change in the NW structure, respectively, from cubic to hexagonal, with a noticeable change in magnetic parameters. The NW arrays were irradiated with argon ions with an energy of 15 keV with fluences from 8.6·1011 to 6.3·1015 cm-2. When Co-NWs (with a hexagonal lattice type) are irradiated, a non-monotonic change in the hysteresis parameters is observed - an increase and subsequent decrease in saturation magnetization and a change in coercive force. In samples based on the other two types of NW, the effect of irradiation is ambiguous. Irradiation leads to a strong change in the shape of the tips of Co-NWs. Keywords: matrix synthesis, metallic nanowires, ion irradiation, radiation damage, electron microscopy, X-ray phase analysis, saturation magnetization, coercive force.
  1. A.A. Eliseev, A.V. Lukashin. Funktsionalnye nanomaterialy. Fizmatlit, M. (2010). 456 s. (in Russian)
  2. V.M. Anischik, V.E. Borisenko, S.A. Zhdanok, N.K. Tolochko, V.M. Fedosyuk. Nanomaterialy i nanotekhnologii. Izd-vo BGU, Minsk (2008). 372 s. (in Russian)
  3. V.E. Borisenko, A.L. Danilyuk, D.B. Migas. Spintronika. Laboratoriya znanij, M. (2017). 229 s. (in Russian)
  4. H. Masuda, K. Fukuda. Sci. 268, 5216, 1466 (1995)
  5. C.R. Martin. Sci. 266, 5193, 1961 (1994)
  6. N. Lupu. Electrodeposited Nanowires and Their Applications. InTech, Croatia (2010). 236 p
  7. M. Vazquez. Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications. Elsevier-Woodhead Publishing, Amsterdam (2015). 847 p
  8. A.D. Davydov, V.M. Volgin. Russ. J. Electrochem. 52, 9, 806 (2016)
  9. S.V. Vonsovsky. Magnetizm. Nauka, M. (1984). 200 s. (in Russian)
  10. L.V. Kirensky. Magnetizm. Nauka, M. (1967), 196 s. (in Russian)
  11. D.J. Sellmyer, M. Zheng, R. Skomski. J. Phys.: Condens. Matter 13, 25, R433 (2001)
  12. H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, D.J. Sellmyer. Phys. Rev. B 65, 13, 134426 (2002)
  13. L. Piraux. Appl. Sci. 10, 5, 1832 (2020)
  14. T. Mehmood, A. Mukhtar, B. Shahzad Khan, K. Wu. Int. J. Electrochem. Sci. 1, 8, 6423 (2016)
  15. Yu.P. Ivanov, J. Leliaert, A. Crespo, M. Pancaldi, C. Tollan, J. Kosel, A. Chuvilin, P. Vavassori. ACS Appl. Mater. Interfaces 11, 4, 4678 (2019)
  16. J. Verbeeck, O.I. Lebedev, G. Van Tendeloo, L. Cagnon, C. Bougerol, G. Tourillon. J. Electrochem. Soc. 150, 10, E468 (2003)
  17. Y. Yang, Y. Chen, Y. Wu, X. Chen, M. Kong. J. Nanomater. 2010, 793854 (2010)
  18. J. Duan, J. Liu, T.W. Cornelius, H. Yao, D. Moa, Y. Chen, L. Zhang, Y. Sun, M. Hou, C. Trautmann, R. Neumann. Nucl. Instr. Meth. Phys. Res. B 267, 16, 2567 (2009)
  19. F. Li, T. Wang, L. Ren, J. Sun. J. Phys.: Condens. Matter 16, 45, 8053 (2004)
  20. A. Lobo Guerrero, A. Encinas, E. Araujo, L. Piraux, J. de la Torre Medina. J. Phys. D: Appl. Phys. 56, 6, 065003 (2023)
  21. K. Nielsch, F. Muller, A.-P. Li, U. Gosele. Adv. Mater. 12, 8, 582 (2000)
  22. N. Adeela, K. Maaz, U. Khan, S. Karim, M. Ahmad, M. Iqbal, S. Riaz, X.F. Han, M. Maqbool. Ceram Int. 41, 9 Part B, 12081 (2015)
  23. D.C. Leitao, C.T. Sousa, J. Ventura, J.S. Amaral, F. Carpinteiro, K.R. Pirota, M. Vazquez, J.B. Sousa, J.P. Araujo. J. Non-Cryst. Solids 354, 47--51, 5241 (2008)
  24. Y.H. Chen, J.L. Duan, H.J. Yao, D. Mo, T.Q. Liu, T.S. Wang, M.D. Hou, Y.M. Sun, J. Liu. Physica B 441, 1 (2014)
  25. V.V. Ovchinnikov. V kn.: Elektrofizika na Urale: chetvert veka issledovaniy / Pod red. V.G. Shpaka. UrBr RAN, Ekaterinburg (2011). Gl. 13. (in Russian)
  26. N.V. Gushchina, K.V. Shalomov, V.V. Ovchinnikov, N.S. Bannikova, M.A. Milyaev. Phys. Metals. Metallogr. 121, 12, 1168 (2020)
  27. N.V. Gushchina, F.F. Makhin'ko, V.V. Ovchinnikov, N.V. Kataeva, V.I. Voronin, V.I. Bobrovskii, V.V. Sagaradze. Phys. Metals. Metallogr. 122, 3, 307 (2021)
  28. G.G. Bondarenko. Radiatsionnaya fizika, struktura i prochnost tverdykh tel. Laboratoriya znanij, M. (2016). 463 s. (in Russian)
  29. R.A. Andrievski. Phys. --- Uspekhi 57, 10, 945 (2014)
  30. S.K. Park, Y.K. Hong, Y.B. Lee, S.W. Bae, J. Joo. Curr. Appl. Phys. 9, 4, 847 (2009)
  31. H. Shehla, A. Ali, S. Zongo, I. Javed, A. Ishaq, H. Khizar, S. Naseem, M. Maaza. Chin. Phys. Lett. 32, 9, 096101 (015)
  32. S. Honey, S. Naseem, A. Ishaq, M. Maaza, M.T. Bhatti, D. Wan. Chin. Phys. B 25, 4, 045105-1 (2016)
  33. B. Bushra, H. Shehla, M. Madhuku, A. Ishaq, R. Khan, M. Arshad, A. Khalid, N. Shahzad, M. Maaza. Curr. Appl. Phys. 15, 5, 642 (2015)
  34. S.A. Bedin, F.F. Makhin'ko, V.V. Ovchinnikov, N.N. Gerasimenko, D.L. Zagorskiy. IOP Conf. Ser.: Mater. Sci. Eng. 18, 1, 012096 (2017)
  35. S.A. Bedin, V.V. Ovchinnikov, G.E. Remnev, F.F. Makhin'ko, S.K. Pavlov, N.V. Gushchina, D.L. Zagorskiy. Phys. Metals. Metallogr. 119, 1, 44 (2018)
  36. C. Chappert, H. Bernas, J. Ferre, V.V. Kottler, J.-P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V.V. Mathet, H. Launois. Sci. 280, 5371, 1919 (1998)
  37. L.V. Chang, A. Nasruallah, P. Ruchhoeft, S. Khizroev, D. Litvinov. Nanotechnol. 23, 27, 275705 (2012)
  38. T. Devolder, J. Ferre, C. Chappert, H. Bernas, J.-P. Jamet, V. Mathet. Phys. Rev. B 64, 6, 064415 (2001)
  39. M.V. Sapozhnikov, N.S. Gusev, S.A. Gusev, D.A. Tatarskiy, Yu.V. Petrov, A.G. Temiryazev, A.A. Fraerman. Phys. Rev. B 103, 5, 054429 (2021)
  40. L. Herrera Diez, M. Voto, A. Casiraghi, M. Belmeguenai, Y. Roussigne, G. Durin, A. Lamperti, R. Mantovan, V. Sluka, V. Jeudy, Y.T. Liu, A. Stashkevich, S.M. Ch'erif, J. Langer, B. Ocker, L. Lopez-Diaz, D. Ravelosona. Phys. Rev. B 99, 5, 054431 (2019)
  41. I.L. Kalentyeva, O.V. Vikhrova, Yu.A. Danilov, A.V. Zdoroveyshchev, M.V. Dorokhin, Yu.A. Dudin, A.V. Kudrin, M.P. Temiryazeva, A.G. Temiryazev, S.A. Nikitov, A.V. Sadovnikov. Phys. Solid State 63, 3, 386 (2021)
  42. I.Yu. Pashenkin, R.V. Gorev, M.A. Kuznetsov, D.A. Tatarskiy, S.A. Churin, P.A. Yunin, M.N. Drozdov, D.O. Krivulin, M.V. Sapozhnikov, E.S. Demidov, V.A. Skuratov, E.V. Kudyukov, G.V. Kurlyandskaya, A.A. Fraerman, N.I. Polushkin. J. Phys. Chem. C 128, 21, 8853 (2024)
  43. N.V. Gavrilov, G.A. Mesyats, S.P. Nikulin, G.V. Radkovskii, A. Eklind, A.J. Perry, J.R. Treglio. J. Vac. Sci. Technol. A 999 14, 3, 1050 (1996)
  44. K.V. Shalomov, V.V. Ovchinnikov, S.O. Cholakh. Diafragma ionnogo puchka: patent RF N RU189632U1. Byull. N 16 (2019). 6 s. (in Russian)
  45. SRIM-2013 The Stopping and Range of Ions in Matter. Available online: http://www.srim.org/SRIM/SRIM2011.htm (accessed on 29.10.2021)
  46. V.V. Ovchinnikov. Phys. --- Uspekhi 51, 9, 955 (2008)
  47. V.V. Ovchinnikov. Surf. Coat. Technol. 35, 65 (2018)
  48. N.V. Gushchina, V.V. Ovchinnikov, F.F. Makhin'ko, S.A. Linnik. J. Phys.: Conf. Ser. 830, 1, 012089 (2017)
  49. V.V. Ovchinnikov, N.V. Gushchina, S.M. Mozharovsky. Russ. Phys. J. 65, 10, 1657 (2023)
  50. O.M. Zhigalina, D.N. Khmelenin, I.M. Ivanov, I.M. Doludenko, D.L. Zagorskiy. Cristallogr. Reps 66, 6, 1109 (2021).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru