Physics of the Solid State
Volumes and Issues
Investigation of magnetic correlations in aggregates of superparamagnetic particles in NiFe2O4 powders using ferromagnetic resonance
Stolyar S.V. 1,2, Vazhenina I.G. 3, Shokhrina A.O 1,2, Nikolaeva E.D. 2, Li O.A. 1,2, Iskhakov R.S. 3, Belyi A.V. 2
1Siberian Federal University, Krasnoyarsk, Russia
2Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
3Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: stol@iph.krasn.ru, irina-vazhenina@mail.ru, nikolaeva-lena@mail.ru, oksana.anatolievna.li@gmail.com, rauf@iph.krasn.ru

PDF
In order to establish the effect of magnetic interparticle interactions on the dynamic properties of a powder system of superparamagnetic nickel ferrite nanoparticles with an average size of ~4 nm, the temperature dependences of the ferromagnetic resonance (FMR) curve parameters were investigated and analyzed. To describe the experimental results obtained by the FMR method, a model of random magnetic anisotropy is used, which considers the effect of magnetic interparticle interactions on the value of the effective anisotropy constant in an external field. The analysis showed the presence of strong magnetic interactions in the studied system, which disappear when the temperature rises above the blocking temperature and allowed us to obtain quantitative estimates of the intensity and energy of magnetic interparticle interactions, as well as to determine the magnetic anisotropy constant of individual particles (without taking into account the influence of magnetic interparticle interactions). Keywords: nickel ferrite nanoparticles, ferromagnetic resonance, superparamagnetism, interparticle interaction, length of magnetic correlations
  1. S.P. Gubin, Yu.A. Koksharev, G.B. Khomutov, G.Yu. Yurkov. Uspekhi khimii 74, 539 (2005). (in Russian)
  2. S.H. Bossmann, H. Wang, eds. Magnetic Nanomaterials: Applications in Catalysis and Life Sciences. Royal Society of Chemistry, Cambridge (2017)
  3. G.F. Stiufiuc, R.I. Stiufiuc. Appl. Sci. 14, 1623 (2024)
  4. D. Lisjak, A. Mertelj. Prog. Mater. Sci. 95, 286 (2018)
  5. J.M. Vargas, W.C. Nunes, L.M. Socolovsky, M. Knobel, D. Zanchet. Phys. Rev. B 72, 184428 (2005)
  6. M. Knobel, W.C. Nunes, H. Winnischofer, T.C.R. Rocha, L.M. Socolovsky, C.L. Mayorga, D. Zanchet. J. Non-Cryst. Solids 353, 743 (2007)
  7. Y.V. Knyazev, D.A. Balaev, S.V. Stolyar, A.O. Shokhrina, D.A. Velikanov, A.I. Pankrats, A.M. Vorotynov, A.A. Krasikov, S.A. Skorobogatov, M.N. Volochaev, O.A. Bayukov, R.S. Iskhakov. J. Magn. Magn. Mater. 613, 172675 (2025)
  8. D.A. Balaev, A.A. Krasikov, Yu.V. Knyazev, S.V. Stolyar, A.O. Shokhrina, A.D. Balaev, R.S. Iskhakov. Pis'ma v ZhETF 120, 10, 785 (2024). (in Russian)
  9. C. Binns, M.J. Maher, Q.A. Pankhurst, D. Kechrakos, K.N. Trohidou. Phys. Rev. B 66, 184413 (2002)
  10. A.A. Krasikov, Y.V. Knyazev, D.A. Balaev, D.A. Velikanov, S.V. Stolyar, Y.L. Mikhlin, R.N. Yaroslavtsev, R.S. Iskhakov. Phys. B Condens. Matter. 660, 414901 (2023)
  11. A.A. Krasikov, Yu.V. Knyazev, D.A. Balaev, S.V. Stolyar, V.P. Ladygina, A.D. Balaev, R.S. Iskhakov. ZhETF 164, 6, 1026 (2023). (in Russian)
  12. A.G. Gurevich, Magnitnyi rezonans v ferritakh i antiferomagnetikakh. Nauka, M. (1973). p. 591. (in Russian)
  13. I. Benguettat-El Mokhtari, D.S. Schmool. Magnetochemistry 9, 191 (2023)
  14. A.D. Balaev, Yu.V. Boyarshinov, M.M. Karpenko, B.P. Khrustalev. PTE 3, 167 (1985). (in Russian)
  15. R. Berger, J.-C. Bissey, J. Kliava, H. Daubric, C. Estourn\`es. J. Magn. Magn. Mater. 234, 535 (2001)
  16. N.E. Domracheva, A.V. Pyataev, R.A. Manapov, M.S. Gruzdev. ChemPhysChem. 12, 3009 (2011)
  17. I.G. Vazhenina, S.V. Stolyar, A.V. Tyumentseva, M.N. Volochaev, R.S. Iskhakov, S.V. Komogortsev, V.F. Pyankov, E.D. Nikolaeva. FTT 65, 6, 923 (2023). (in Russian)
  18. M. Wencka, A. Jelen, M. Jagodiv c, V. Khare, C. Ruby, J. Dolinv sek. J. Phys. D: Appl. Phys. 42, 245301 (2009)
  19. Y.L. Reicher, M.I. Shliomis. ZhETF 67, 3, 1060 (1974). (in Russian)
  20. R.S. Geht, V.A. Ignatchenko, Y.L. Reicher, M.I. Shliomis. ZhETF 70, 4, 1300 (1976). (in Russian)
  21. Y.L. Raikher, V.I. Stepanov. ZhETF 102, 4, 1409 (1992). (in Russian)
  22. Y.L. Raikher, V.I. Stepanov. Phys. Rev. B 50, 6250 (1994)
  23. S.V. Stolyar, O.A. Li, E.D. Nikolaeva, N.M. Boev, A.M. Vorotynov, D.A. Velikanov, R.S. Iskhakov, V.F. Pyankov, Yu.V. Knyazev, O.A. Bayukov, A.O. Shokhrina, M.S. Molokeev, A.D. Vasiliev. FTT 65, 1006 (2023). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru