Study of structural and magnetic properties of epitaxial 57Fe-enriched thin-film nanostructures during thermal oxidation
Blinov I. V.
1, Milyaev M. A.
1, Korkh Y. V.
1, Kuznetsova T. V.
1, Maksimova I. K.
1, Stolbovsky A. V.
1, Germov A. Yu.
1, Goloborodsky B. Yu.
1, Falahutdinov R. M.
1, Osinnikov E.V.
1, Devyaterikov D. I.
11M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: blinoviv@mail.ru, milyaev@imp.uran.ru, korkh@imp.uran.ru, kuznetsova@imp.uran.ru, maksimovaik@imp.uran.ru, stolbovsky@imp.uran.ru, germov@imp.uran.ru, borisgolob@yandex.ru, falahutdinov@imp.uran.ru, egor.osinnikov@yandex.ru, devidor@imp.uran.ru
This work investigates the effects of thermomagnetic treatment on the structural and magnetic properties of epitaxial layered structures MgO(100)/57Fe(50 nm)/Cr(2 nm). Using X-ray diffraction, Raman spectroscopy, atomic force microscopy, and Mossbauer spectroscopy, we analyzed structural changes during annealing in the temperature range of 200-300 oC. The study reveals that at temperatures above 250 oC, oxygen diffusion through the protective Cr layer leads to the formation of antiferromagnetic α-Fe2O3. An increase in coercivity up to 190 Oe at 280 oC is attributed to exchange coupling between Fe and α-Fe2O3. However, no shift in the magnetic hysteresis loop (exchange bias) is observed, which may result from low magnetic anisotropy of hematite (α-Fe2O3) and structural and chemical inhomogeneity at the interlayer boundaries. Keywords: Hematite (α-Fe2O3), unidirectional anisotropy, thermomagnetic treatment, oxygen diffusion, exchange bias, epitaxial thin films, interface engineering, magnetic nanostructures.
- C. Zheng, K. Zhu, S.C. De Freitas. IEEE Transactions on Magnetics. 55, 4, 0800130 (2010). DOI: 10.1109/TMAG.2019.2896036
- A.Y. Mohamed, W.G. Park, D.-Y. Cho. Magnetochemistry 6, 33 (2020). DOI: 10.3390/magnetochemistry6030033
- T. Blachowicz, A. Ehrmann. Coatings 11, 122 (2021). DOI: 10.3390/coatings11020122
- F. Radu, H. Zabel. In: Magnetic Heterostructures. Springer Tracts in Modern Physics, vol. 227. Springer-Verlag, Berlin, Heidelberg. (2008). P. 97
- L. Jogschies, D. Klaas, R. Kruppe. Sensors 15, 11, 28665 (2015). DOI: 10.3390/s151128665
- R. Coehoorn. Novel Magnetoelectronic Materials and Devices: Handbook of Magnetic Materials. Elsevier, Amsterdam (2003)
- P. Li, C. Xia, Z. Zhu, Y. Wen, Q. Zhang, H.N. Alshareef, X.-X. Zhang. Adv. Funct. Mater. 26, 31, 5679 (2016). DOI: 10.1002/adfm.201504999
- Y.X. Lu, J.S. Claydon, Y.B. Xu, S.M. Thompson, K. Wilson, G. van der Laan. Phys. Rev. B 70, 233304 (2004). DOI: 10.1103/PhysRevB.70.233304
- S.S.A. Hassan, X. Yongbin, W. Jing, S.M. Thompson. IEEE Trans. Magn. 45, 10, 4357 (2009). DOI: 10.1109/TMAG.2009.2025600
- V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, C.V.V. Muralee Gopi, A. Khaleel, S. Alaabed, B. Issa, I.M. Obaidat. AIMS Mater. Sci. 9, 1, 71 (2022). DOI: 10.3934/matersci.2022005
- A. Stierle, T. Muhge, H. Zabel. J. Mater. Res. 9, 884 (1994). DOI: 10.1557/JMR.1994.0884
- M.J. Graham, R.J. Hussey. Oxid. Met. 15, 5/6, 407 (1981). DOI: 10.1007/BF00603533
- R. Subbaraman, S.A. Deshmukh, S. K.R.S. Sankaranarayanan. J. Phys. Chem. C 117, 5195 (2013)
- Yu.V. Baldokhin, Yu.D. Perfiliev, L.A. Kulikov, M.A. Burnazyan. Vestnik Moskovskogo Universiteta. Khimiya. 56, 2, 91 (2015). (in Russian)
- A. Marczynska, J. Skoryna, M. Lewandowski, L. Smardz. Acta Phys. Pol., A 127, 2, 549 (2015). DOI: 10.12693/APhysPolA.127.549
- B.D. Cullity. Elements of X-Ray Diffraction. Addison- 314 Wesley, Inc., London. (1978)
- I. Flis-Kabulska, B. Handke, N. Spiridis, J. Haber, J. Korecki. Surf. Sci. 507-510, 865 (2002). DOI: 10.1016/S0039-6028(02)01364-X
- Md.A. Mohiddon, K.L. Naidu, M.G. Krishna, G. Dalba, S.I. Ahmed, F. Rocca. J. Appl. Phys. 115, 044315 (2014). DOI: 10.1063/1.4863309
- T. Ashraf, C. Gusenbauer, J. Stangl, G. Hesser, R. Koch. J. Phys.: Condens. Matter 27, 036001 (2015). DOI: 10.1088/0953-8984/27/3/036001
- K. Thurmer, R. Koch, M. Weber, K.H. Rieder. Phys. Rev. Lett. 75, 9, 1767 (????). DOI: 10.1103/PhysRevLett.75.1767
- K.-Y. Wang, M. Sawicki, K.W. Edmonds, R.P. Campion, S. Maat, C.T. Foxon, B.L. Gallagher, T. Dietl. Phys. Rev. Lett. 95, 217204 (2005). DOI: 10.1103/PhysRevLett.95.217204
- S.C. Tsai, A.M. Huntz, C. Dolin. Mater. Sci. Eng. A 212, 6 (1996). DOI: 10.1016/0921-5093(96)10173-8
- R. Barlow. P.J. Grundy. J. Mater. Sci. 4, 797 (1969). DOI: 10.1007/BF00551075
- E. Rani, V.K. Gupta, F. Gyakwaa, M. Kharbach, H. Singh, T. Alatarvas, A. Martinelli, T. Fabritius, M. Huttula. Results Mater. 23, 100598 (2024). DOI: 10.1016/j.rinma.2024.100598
- A. Koziol-Rachwal, N. Kwiatek, W. Skowronski, K. Grochot, J. Kanak, E. Madej, K. Freindl, J. Korecki, N. Spiridis. Phys. Rev. B 106, 104419 (2022). DOI: 10.1103/PhysRevB.106.104419
- A.C. Sparavigna. Raman Spectroscopy of the Iron Oxides in the Form of Minerals, Particles and Nanoparticles. (2023) DOI: 10.26434/chemrxiv-2023-22kh4-v2
- B.M. Gleeson, S.M.M. Hadavi, D.J. Young. Mater. High Temp. 17, 2, 311 (2000). DOI: 10.3184/096034000783640776
- T. Fujii, M. Takano, R. Kakano, Y. Isozumi, Y. Bando. J. Magn. Magn. Mater. 135, 231 (1994). DOI: 10.1016/0304-8853(94)90351-4
- A.G. Roca, J.F. Marco, M. del Puerto Morales, C.J. Serna. J. Phys. Chem. C 111, 50, 18577 (2007). DOI: 10.1021/jp075133m
- G.M. da Costa, C. Blanco-Andujar, E. De Grave, Q.A. Pankhurst. J. Phys. Chem. B 118, 11738 (2014). DOI: 10.1021/jp5055765
- E. M ynczak, K. Freindl, N. Spiridis, J. Korecki. J. Appl. Phys. 113, 2, 024320 (2013). DOI: 10.1063/1.4775707
- B. Tsedenbal, I. Hussain, M.S. Anwar, B.H. Koo. J. Nanosci. Nanotechnol. 18, 9, 6127 (2018). DOI:/10.1166/jnn.2018.15614
- Q. Zhang, X. Lu, L. Chen, Y. Shi, T. Xu, M. Liu. Mater. Lett. 106, 447 (2013). DOI: 10.1016/j.matlet.2013.08.029
- J.F. Mir, S. Rubab, M.A. Shah. Chem. Phys. Lett. 741, 137088 (2020). DOI: 10.1016/j.cplett.2020.137088
- K. O'Grady, L.E. Fernandez, G. Vallejo-Fernandez. J. Magn. Magn. Mater., 322, 883 (2010). DOI: 10.1016/j.jmmm.2009.12.011
- A. Harres, J. Geshev. J. Phys.: Condens. Matter. 24, 32, 326004 (2012). DOI: 10.1088/0953-8984/24/32/326004
- A.E. Berkowitz, S.K. Sinha, E.E. Fullerton, D.J. Smith. J. Appl. Phys. 117, 172607 (2015). DOI: 10.1063/1.4914340
- E. Mlynczak, P. Luches, S. Valeri, J. Korecki. J. Appl. Phys. 113, 234315 (2013). DOI: 10.1063/1.4811528
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.