Physics of the Solid State
Volumes and Issues
Study of structural and magnetic properties of epitaxial 57Fe-enriched thin-film nanostructures during thermal oxidation
Blinov I. V. 1, Milyaev M. A. 1, Korkh Y. V. 1, Kuznetsova T. V. 1, Maksimova I. K. 1, Stolbovsky A. V. 1, Germov A. Yu. 1, Goloborodsky B. Yu. 1, Falahutdinov R. M. 1, Osinnikov E.V. 1, Devyaterikov D. I. 1
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: blinoviv@mail.ru, milyaev@imp.uran.ru, korkh@imp.uran.ru, kuznetsova@imp.uran.ru, maksimovaik@imp.uran.ru, stolbovsky@imp.uran.ru, germov@imp.uran.ru, borisgolob@yandex.ru, falahutdinov@imp.uran.ru, egor.osinnikov@yandex.ru, devidor@imp.uran.ru

PDF
This work investigates the effects of thermomagnetic treatment on the structural and magnetic properties of epitaxial layered structures MgO(100)/57Fe(50 nm)/Cr(2 nm). Using X-ray diffraction, Raman spectroscopy, atomic force microscopy, and Mossbauer spectroscopy, we analyzed structural changes during annealing in the temperature range of 200-300 oC. The study reveals that at temperatures above 250 oC, oxygen diffusion through the protective Cr layer leads to the formation of antiferromagnetic α-Fe2O3. An increase in coercivity up to 190 Oe at 280 oC is attributed to exchange coupling between Fe and α-Fe2O3. However, no shift in the magnetic hysteresis loop (exchange bias) is observed, which may result from low magnetic anisotropy of hematite (α-Fe2O3) and structural and chemical inhomogeneity at the interlayer boundaries. Keywords: Hematite (α-Fe2O3), unidirectional anisotropy, thermomagnetic treatment, oxygen diffusion, exchange bias, epitaxial thin films, interface engineering, magnetic nanostructures.
  1. C. Zheng, K. Zhu, S.C. De Freitas. IEEE Transactions on Magnetics. 55, 4, 0800130 (2010). DOI: 10.1109/TMAG.2019.2896036
  2. A.Y. Mohamed, W.G. Park, D.-Y. Cho. Magnetochemistry 6, 33 (2020). DOI: 10.3390/magnetochemistry6030033
  3. T. Blachowicz, A. Ehrmann. Coatings 11, 122 (2021). DOI: 10.3390/coatings11020122
  4. F. Radu, H. Zabel. In: Magnetic Heterostructures. Springer Tracts in Modern Physics, vol. 227. Springer-Verlag, Berlin, Heidelberg. (2008). P. 97
  5. L. Jogschies, D. Klaas, R. Kruppe. Sensors 15, 11, 28665 (2015). DOI: 10.3390/s151128665
  6. R. Coehoorn. Novel Magnetoelectronic Materials and Devices: Handbook of Magnetic Materials. Elsevier, Amsterdam (2003)
  7. P. Li, C. Xia, Z. Zhu, Y. Wen, Q. Zhang, H.N. Alshareef, X.-X. Zhang. Adv. Funct. Mater. 26, 31, 5679 (2016). DOI: 10.1002/adfm.201504999
  8. Y.X. Lu, J.S. Claydon, Y.B. Xu, S.M. Thompson, K. Wilson, G. van der Laan. Phys. Rev. B 70, 233304 (2004). DOI: 10.1103/PhysRevB.70.233304
  9. S.S.A. Hassan, X. Yongbin, W. Jing, S.M. Thompson. IEEE Trans. Magn. 45, 10, 4357 (2009). DOI: 10.1109/TMAG.2009.2025600
  10. V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, C.V.V. Muralee Gopi, A. Khaleel, S. Alaabed, B. Issa, I.M. Obaidat. AIMS Mater. Sci. 9, 1, 71 (2022). DOI: 10.3934/matersci.2022005
  11. A. Stierle, T. Muhge, H. Zabel. J. Mater. Res. 9, 884 (1994). DOI: 10.1557/JMR.1994.0884
  12. M.J. Graham, R.J. Hussey. Oxid. Met. 15, 5/6, 407 (1981). DOI: 10.1007/BF00603533
  13. R. Subbaraman, S.A. Deshmukh, S. K.R.S. Sankaranarayanan. J. Phys. Chem. C 117, 5195 (2013)
  14. Yu.V. Baldokhin, Yu.D. Perfiliev, L.A. Kulikov, M.A. Burnazyan. Vestnik Moskovskogo Universiteta. Khimiya. 56, 2, 91 (2015). (in Russian)
  15. A. Marczynska, J. Skoryna, M. Lewandowski, L. Smardz. Acta Phys. Pol., A 127, 2, 549 (2015). DOI: 10.12693/APhysPolA.127.549
  16. B.D. Cullity. Elements of X-Ray Diffraction. Addison- 314 Wesley, Inc., London. (1978)
  17. I. Flis-Kabulska, B. Handke, N. Spiridis, J. Haber, J. Korecki. Surf. Sci. 507-510, 865 (2002). DOI: 10.1016/S0039-6028(02)01364-X
  18. Md.A. Mohiddon, K.L. Naidu, M.G. Krishna, G. Dalba, S.I. Ahmed, F. Rocca. J. Appl. Phys. 115, 044315 (2014). DOI: 10.1063/1.4863309
  19. T. Ashraf, C. Gusenbauer, J. Stangl, G. Hesser, R. Koch. J. Phys.: Condens. Matter 27, 036001 (2015). DOI: 10.1088/0953-8984/27/3/036001
  20. K. Thurmer, R. Koch, M. Weber, K.H. Rieder. Phys. Rev. Lett. 75, 9, 1767 (????). DOI: 10.1103/PhysRevLett.75.1767
  21. K.-Y. Wang, M. Sawicki, K.W. Edmonds, R.P. Campion, S. Maat, C.T. Foxon, B.L. Gallagher, T. Dietl. Phys. Rev. Lett. 95, 217204 (2005). DOI: 10.1103/PhysRevLett.95.217204
  22. S.C. Tsai, A.M. Huntz, C. Dolin. Mater. Sci. Eng. A 212, 6 (1996). DOI: 10.1016/0921-5093(96)10173-8
  23. R. Barlow. P.J. Grundy. J. Mater. Sci. 4, 797 (1969). DOI: 10.1007/BF00551075
  24. E. Rani, V.K. Gupta, F. Gyakwaa, M. Kharbach, H. Singh, T. Alatarvas, A. Martinelli, T. Fabritius, M. Huttula. Results Mater. 23, 100598 (2024). DOI: 10.1016/j.rinma.2024.100598
  25. A. Koziol-Rachwal, N. Kwiatek, W. Skowronski, K. Grochot, J. Kanak, E. Madej, K. Freindl, J. Korecki, N. Spiridis. Phys. Rev. B 106, 104419 (2022). DOI: 10.1103/PhysRevB.106.104419
  26. A.C. Sparavigna. Raman Spectroscopy of the Iron Oxides in the Form of Minerals, Particles and Nanoparticles. (2023) DOI: 10.26434/chemrxiv-2023-22kh4-v2
  27. B.M. Gleeson, S.M.M. Hadavi, D.J. Young. Mater. High Temp. 17, 2, 311 (2000). DOI: 10.3184/096034000783640776
  28. T. Fujii, M. Takano, R. Kakano, Y. Isozumi, Y. Bando. J. Magn. Magn. Mater. 135, 231 (1994). DOI: 10.1016/0304-8853(94)90351-4
  29. A.G. Roca, J.F. Marco, M. del Puerto Morales, C.J. Serna. J. Phys. Chem. C 111, 50, 18577 (2007). DOI: 10.1021/jp075133m
  30. G.M. da Costa, C. Blanco-Andujar, E. De Grave, Q.A. Pankhurst. J. Phys. Chem. B 118, 11738 (2014). DOI: 10.1021/jp5055765
  31. E. M ynczak, K. Freindl, N. Spiridis, J. Korecki. J. Appl. Phys. 113, 2, 024320 (2013). DOI: 10.1063/1.4775707
  32. B. Tsedenbal, I. Hussain, M.S. Anwar, B.H. Koo. J. Nanosci. Nanotechnol. 18, 9, 6127 (2018). DOI:/10.1166/jnn.2018.15614
  33. Q. Zhang, X. Lu, L. Chen, Y. Shi, T. Xu, M. Liu. Mater. Lett. 106, 447 (2013). DOI: 10.1016/j.matlet.2013.08.029
  34. J.F. Mir, S. Rubab, M.A. Shah. Chem. Phys. Lett. 741, 137088 (2020). DOI: 10.1016/j.cplett.2020.137088
  35. K. O'Grady, L.E. Fernandez, G. Vallejo-Fernandez. J. Magn. Magn. Mater., 322, 883 (2010). DOI: 10.1016/j.jmmm.2009.12.011
  36. A. Harres, J. Geshev. J. Phys.: Condens. Matter. 24, 32, 326004 (2012). DOI: 10.1088/0953-8984/24/32/326004
  37. A.E. Berkowitz, S.K. Sinha, E.E. Fullerton, D.J. Smith. J. Appl. Phys. 117, 172607 (2015). DOI: 10.1063/1.4914340
  38. E. Mlynczak, P. Luches, S. Valeri, J. Korecki. J. Appl. Phys. 113, 234315 (2013). DOI: 10.1063/1.4811528

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru