Physics of the Solid State
Volumes and Issues
Structure and electrochemical characteristics of silver-doped composites based on multi-walled carbon nanotubes and KxMnO2 oxide
Nesov S. N. 1, Lobov I. A. 1, Matyushenko S. A. 1, Knyazev E. V. 1, Bolotov V.V. 1, Zemskov E. S.1, Zhizhin E. V. 2, Koroleva A. V. 2, Grigoriev E. A.2
1Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: nesov55@mail.ru, sergey199622@mail.ru, knyazevyegor@mail.ru

PDF
The mechanisms of composites formation based on multi-walled carbon nanotubes (MWCNTs) and silver-doped KxMnO2 oxide obtained by treating MWCNTs in an aqueous solution of KMnO4 with the addition of AgNO3 were studied. The crystal structure and chemical state of the composites obtained with different synthesis times were analyzed. It was shown that with a short synthesis time, defective MnO2-x oxide is predominantly formed on the MWCNT surface, which, in the case of doping, additionally contains double oxides AgxMnO2. With an increase in the synthesis time, composites are formed containing predominantly layered KxMnO2 oxide, which, in the case of doping, contains AgxMnO2 oxides and Ag2-xO oxide nanoparticles. Analysis of electrochemical characteristics showed that doping of the composite provides a noticeable increase in specific capacitance up to ~201 F/g at a discharge current density of 0.1 A/g versus 148 F/g for the undoped composite. Keywords: supercapacitors, electrode materials, layered manganese oxide, redox reactions.
  1. N. Liu, X. Zhao, B. Qin, D. Zhao, H. Dong, M. Qiu, L. Wang. J. Mater. Chem. A 10, 25168 (2022). DOI: 10.1039/D2TA06681E
  2. Z. Zhao, Y. Sun, Y. Pan, J. Liu, J. Zhou, M. Ma, X. Wu, X. Shen, J. Zhou, P. Zhou. J. Colloid Interface Sci. 652, 231 (2023). DOI: 10.1016/j.jcis.2023.08.055
  3. L. Chen, Y. Zhang, C. Hao, X. Zheng, Q. Sun, Y. Wei, B. Li, L. Ci, J. Wei. ChemElectroChem 9, e202200059 (2022). DOI: 10.1002/celc.202200059
  4. G. He, Y. Duan, L. Song, X. Zhang. J. Appl. Phys. 123, 214101 (2018). DOI: 10.1063/1.5021614
  5. S.N. Nesov, I.A. Lobov, S.A. Matyushenko, E.A. Grigoriev. ECS J. Solid State Sci. Technol. 13, 101002 (2024). DOI: 10.1149/2162-8777/ad8517
  6. Z. Pan, C. Yang, Y. Li, X. Hu, X. Ji. Chem. Eng. J. 428, 131138 (2022). DOI: 10.1016/j.cej.2021.131138
  7. S.N. Nesov, I.A. Lobov, S.A. Matyushenko, V.V. Bolotov, K.E. Ivlev, D.V. Sokolov, Yu.A. Stenkin. FTT 65, 2033 (2023). (in Russian). DOI: 10.61011/FTT.2023.11.56563.196
  8. R. Ai, X. Zhang, S. Li, Z. Wei, G. Chen, F. Du. Chem. Eur. J. 30, e202400791 (2024). DOI: 10.1002/chem.202400791
  9. I. Oda-Bayliss, S. Yagi, M. Kamiko, K. Shimada, H. Kobayashi, T. Ichitsubo. J. Mater. Chem. A 12, 17510 (2024). DOI: 10.1039/D4TA00659C
  10. A. Ochirkhuyag, T. Varga, I. Y. Toth, A.T. Varga, A. Sapi, A. Kukovecz, Z. Konya. Int. J. Hydrog. Energy 45, 16266 (2020). DOI: 10.1016/j.ijhydene.2020.04.022
  11. D.R. Jones, H.E.M. Hussein, E.A. Worsley, S. Kiani, K. Kamlungsua, T.M. Fone, C.O. Phillips, D. Deganello. ChemElectroChem. 10, e202300210 (2023). DOI: 10.1002/celc.202300210
  12. P. Pazhamalai, V. Krishnan, M.S. Saleem, S. Kim, H. Seo. Nano Convergence 11, 30 (2024). DOI: 10.1186/s40580-024-00437-2
  13. V.L. Kuznetsov, D.V. Krasnikov, A.N. Schmakov, K.V. Elumeeva. Phys. Stat. Sol. B 249, 2390 (2012). DOI: 10.1002/pssb.201200120
  14. S.A. Matyushenko, S.N. Nesov. Dinamika sistem, mekhanizmov i mashin 12, 78 (2024). (in Russian). DOI: 10.25206/2310-9793-2024-12-3-78-86
  15. D. Gangwar, C. Rath. Appl. Surf. Sci. 557, 149693 (2021). DOI: 10.1016/j.apsusc.2021.149693
  16. O. Mahroua, B. Alili, A. Ammari, B. Bellal, D. Bradai, M. Trari. Ceram. Int. 45, 10511 (2019). DOI: 10.1016/j.ceramint.2019.02.113
  17. C. Guo, Q. Zhou, H. Liu, S. Tian, B. Chen, J. Zhao, J. Li. Electrochimica Acta 324, 134867 (2019). DOI: 10.1016/j.electacta.2019.134867
  18. A. Li, C. Li, P. Xiong, J. Zhang, D. Geng, Y. Xu. Chem. Sci. 13, 7575 (2022). DOI: 10.1039/D2SC02442J
  19. V.V. Bolotov, E.V. Knyazev, S.N. Nesov. Pisma v ZhTF 48, 11 (2022). (in Russian). DOI: 10.21883/PJTF.2022.05.52148.18864
  20. L.G. Bulusheva, S.G. Stolyarova, A.L. Chuvilin, Yu.V. Shubin, I.P. Asanov, A.M. Sorokin, M.S. Mel'gunov, S. Zhang, Y. Dong, X. Chen, H. Song, A.V. Okotrub. Nanotechnology 29, 134001 (2019). DOI: 10.1088/1361-6528/aaa99f
  21. V.S. Kovivchak, S.N. Nesov, T.V. Panova. FTT 67, 50 (in Russian) (2025). DOI: 10.61011/FTT.2025.01.59768.293
  22. S.N. Nesov, P.M. Korusenko, V.A. Sachkov, V.V. Bolotov, S.N. Povoroznyuk. J. Phys. Chem. Solids. 169, 110831 (2022). DOI: 10.1016/j.jpcs.2022.110831
  23. Benedet, A. Gasparotto, G.A. Rizzi, C. Maccato, D. Mariotti, R. McGlynn, D. Barreca. Surf. Sci. Spectra. 30, 024018 (2023). DOI: 10.1116/6.0002827
  24. X. Cui, F. Hu, W. Wei, W. Chen. Carbon 49, 1225 (2011). DOI: 10.1016/j.carbon.2010.11.039
  25. M.L. Lopez, I. Alvarez-Serrano, D.A. Giraldo, P. Almodovar, E. Rodri guez-Aguado, E. Rodri guez-Castellon. Appl. Sci. 12, 1176 (2022). DOI: 10.3390/app12031176
  26. O.V. Petrova, D.V. Sivkov, S.V. Nekipelov, A.S. Vinogradov, P.M. Korusenko, S.I. Isaenko, R.N. Skandakov, K.A. Bakina, V.N. Sivkov. Appl. Sci. 13, 128 (2023). DOI: 10.3390/app13010128
  27. https://xpsdatabase.net/silver-spectra-ag-metal
  28. D.G. Gromadsky. J. Chem. Sci. 128, 1011 (2016). DOI: 10.1007/s12039-016-1084-2

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru