Structure and electrochemical characteristics of silver-doped composites based on multi-walled carbon nanotubes and KxMnO2 oxide
Nesov S. N.
1, Lobov I. A.
1, Matyushenko S. A.
1, Knyazev E. V.
1, Bolotov V.V.
1, Zemskov E. S.
1, Zhizhin E. V.
2, Koroleva A. V.
2, Grigoriev E. A.
21Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: nesov55@mail.ru, sergey199622@mail.ru, knyazevyegor@mail.ru
The mechanisms of composites formation based on multi-walled carbon nanotubes (MWCNTs) and silver-doped KxMnO2 oxide obtained by treating MWCNTs in an aqueous solution of KMnO4 with the addition of AgNO3 were studied. The crystal structure and chemical state of the composites obtained with different synthesis times were analyzed. It was shown that with a short synthesis time, defective MnO2-x oxide is predominantly formed on the MWCNT surface, which, in the case of doping, additionally contains double oxides AgxMnO2. With an increase in the synthesis time, composites are formed containing predominantly layered KxMnO2 oxide, which, in the case of doping, contains AgxMnO2 oxides and Ag2-xO oxide nanoparticles. Analysis of electrochemical characteristics showed that doping of the composite provides a noticeable increase in specific capacitance up to ~201 F/g at a discharge current density of 0.1 A/g versus 148 F/g for the undoped composite. Keywords: supercapacitors, electrode materials, layered manganese oxide, redox reactions.
- N. Liu, X. Zhao, B. Qin, D. Zhao, H. Dong, M. Qiu, L. Wang. J. Mater. Chem. A 10, 25168 (2022). DOI: 10.1039/D2TA06681E
- Z. Zhao, Y. Sun, Y. Pan, J. Liu, J. Zhou, M. Ma, X. Wu, X. Shen, J. Zhou, P. Zhou. J. Colloid Interface Sci. 652, 231 (2023). DOI: 10.1016/j.jcis.2023.08.055
- L. Chen, Y. Zhang, C. Hao, X. Zheng, Q. Sun, Y. Wei, B. Li, L. Ci, J. Wei. ChemElectroChem 9, e202200059 (2022). DOI: 10.1002/celc.202200059
- G. He, Y. Duan, L. Song, X. Zhang. J. Appl. Phys. 123, 214101 (2018). DOI: 10.1063/1.5021614
- S.N. Nesov, I.A. Lobov, S.A. Matyushenko, E.A. Grigoriev. ECS J. Solid State Sci. Technol. 13, 101002 (2024). DOI: 10.1149/2162-8777/ad8517
- Z. Pan, C. Yang, Y. Li, X. Hu, X. Ji. Chem. Eng. J. 428, 131138 (2022). DOI: 10.1016/j.cej.2021.131138
- S.N. Nesov, I.A. Lobov, S.A. Matyushenko, V.V. Bolotov, K.E. Ivlev, D.V. Sokolov, Yu.A. Stenkin. FTT 65, 2033 (2023). (in Russian). DOI: 10.61011/FTT.2023.11.56563.196
- R. Ai, X. Zhang, S. Li, Z. Wei, G. Chen, F. Du. Chem. Eur. J. 30, e202400791 (2024). DOI: 10.1002/chem.202400791
- I. Oda-Bayliss, S. Yagi, M. Kamiko, K. Shimada, H. Kobayashi, T. Ichitsubo. J. Mater. Chem. A 12, 17510 (2024). DOI: 10.1039/D4TA00659C
- A. Ochirkhuyag, T. Varga, I. Y. Toth, A.T. Varga, A. Sapi, A. Kukovecz, Z. Konya. Int. J. Hydrog. Energy 45, 16266 (2020). DOI: 10.1016/j.ijhydene.2020.04.022
- D.R. Jones, H.E.M. Hussein, E.A. Worsley, S. Kiani, K. Kamlungsua, T.M. Fone, C.O. Phillips, D. Deganello. ChemElectroChem. 10, e202300210 (2023). DOI: 10.1002/celc.202300210
- P. Pazhamalai, V. Krishnan, M.S. Saleem, S. Kim, H. Seo. Nano Convergence 11, 30 (2024). DOI: 10.1186/s40580-024-00437-2
- V.L. Kuznetsov, D.V. Krasnikov, A.N. Schmakov, K.V. Elumeeva. Phys. Stat. Sol. B 249, 2390 (2012). DOI: 10.1002/pssb.201200120
- S.A. Matyushenko, S.N. Nesov. Dinamika sistem, mekhanizmov i mashin 12, 78 (2024). (in Russian). DOI: 10.25206/2310-9793-2024-12-3-78-86
- D. Gangwar, C. Rath. Appl. Surf. Sci. 557, 149693 (2021). DOI: 10.1016/j.apsusc.2021.149693
- O. Mahroua, B. Alili, A. Ammari, B. Bellal, D. Bradai, M. Trari. Ceram. Int. 45, 10511 (2019). DOI: 10.1016/j.ceramint.2019.02.113
- C. Guo, Q. Zhou, H. Liu, S. Tian, B. Chen, J. Zhao, J. Li. Electrochimica Acta 324, 134867 (2019). DOI: 10.1016/j.electacta.2019.134867
- A. Li, C. Li, P. Xiong, J. Zhang, D. Geng, Y. Xu. Chem. Sci. 13, 7575 (2022). DOI: 10.1039/D2SC02442J
- V.V. Bolotov, E.V. Knyazev, S.N. Nesov. Pisma v ZhTF 48, 11 (2022). (in Russian). DOI: 10.21883/PJTF.2022.05.52148.18864
- L.G. Bulusheva, S.G. Stolyarova, A.L. Chuvilin, Yu.V. Shubin, I.P. Asanov, A.M. Sorokin, M.S. Mel'gunov, S. Zhang, Y. Dong, X. Chen, H. Song, A.V. Okotrub. Nanotechnology 29, 134001 (2019). DOI: 10.1088/1361-6528/aaa99f
- V.S. Kovivchak, S.N. Nesov, T.V. Panova. FTT 67, 50 (in Russian) (2025). DOI: 10.61011/FTT.2025.01.59768.293
- S.N. Nesov, P.M. Korusenko, V.A. Sachkov, V.V. Bolotov, S.N. Povoroznyuk. J. Phys. Chem. Solids. 169, 110831 (2022). DOI: 10.1016/j.jpcs.2022.110831
- Benedet, A. Gasparotto, G.A. Rizzi, C. Maccato, D. Mariotti, R. McGlynn, D. Barreca. Surf. Sci. Spectra. 30, 024018 (2023). DOI: 10.1116/6.0002827
- X. Cui, F. Hu, W. Wei, W. Chen. Carbon 49, 1225 (2011). DOI: 10.1016/j.carbon.2010.11.039
- M.L. Lopez, I. Alvarez-Serrano, D.A. Giraldo, P. Almodovar, E. Rodri guez-Aguado, E. Rodri guez-Castellon. Appl. Sci. 12, 1176 (2022). DOI: 10.3390/app12031176
- O.V. Petrova, D.V. Sivkov, S.V. Nekipelov, A.S. Vinogradov, P.M. Korusenko, S.I. Isaenko, R.N. Skandakov, K.A. Bakina, V.N. Sivkov. Appl. Sci. 13, 128 (2023). DOI: 10.3390/app13010128
- https://xpsdatabase.net/silver-spectra-ag-metal
- D.G. Gromadsky. J. Chem. Sci. 128, 1011 (2016). DOI: 10.1007/s12039-016-1084-2
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.