Pathways to increase reconstruction accuracy and depth sensitivity in mesoscopic fluorescence molecular tomography
Konovalov A. B.
1, Vlasov V. V.
1, Samarin S. I.
1, Solovyev I. D.
2, Tuchina D. K.
3,4, Savitsky A. P.
2, Tuchin V. V.
3,4,51Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics, Snezhinsk, Russia
2Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Science, Moscow, Russia
3Saratov State University, Saratov, Russia
4Tomsk State University, Tomsk, Russia
5Institute of Precision Mechanics and Control, FRS “Saratov Scientific Center of the Russian Academy of Science, Saratov, Russia
Email: a_konov@mail.vega-int.ru, vitaly.vlasov.v@yandex.ru, samarine@mail.ru, gungnier@gmail.com, tuchinadk@mail.ru, apsavitsky@inbi.ras.ru, tuchinvv@mail.ru
Using the method of mesoscopic fluorescence molecular tomography (FMT), a phantom with a fluorophore forming periodic spatial structures was experimentally reconstructed. It is shown that the use of reflectance geometry with a high density of sources and detectors helps increase reconstruction accuracy and resolve structures 0.55 mm in diameter at depths to 5 mm inclusive. The depth sensitivity of the proposed mesoscopic FMT method was tested through the analysis of sensitivity functions obtained in a series of calculations by the modernized TurbidMC code that implements the Monte Carlo method. Calculated results demonstrate that the depth sensitivity can be improved due to the optical clearing of the object's surface layer. Keywords: fluorescence molecular tomography, mesoscopic mode, sensitivity function, phantom with fluorophore, periodic spatial structure, reconstruction accuracy, depth sensitivity.
- C. Darne, Y. Lu, E.M. Sevick-Muraca. Phys. Med. Biol., 59 (1), R1 (2014). DOI: 10.1088/0031-9155/59/1/R1
- Y. An, K. Wang, J. Tian. Visual Comput. Industry Biomed. Art., 1, 1(2018). DOI: 10.1186/s42492-018-0001-6
- A. Dunn, D. Boas. Opt. Lett., 25 (24), 1777 (2000). DOI: 10.1364/OL.25.001777
- E.M.C. Hillman, D.A. Boas, A.M. Dale, A.K. Dunn. Opt. Lett., 29(14), 1650 (2004). DOI: 10.1364/OL.29.001650
- F. Yang, M.S. Ozturk, L. Zhao, W. Cong, G. Wang, X. Intes. IEEE Trans. Biomed. Eng., 62 (1), 248 (2015). DOI: 10.1109/TBME.2014.2347284
- S. Gao, M. Li, J.T. Smith, X. Intes. Biomed. Opt. Express., 13(9), 4637 (2022). DOI: 10.1364/BOE.460216
- A.B. Konovalov, V.V. Vlasov. Proc. SPIE, 11457, 1145703 (2020). DOI: 10.1117/12.2560139
- A.B. Konovalov, V.V. Vlasov, A.S. Uglov. Int. J. Numer. Meth. Biomed. Eng., 37(1), e3408 (2021). DOI: 10.1002/cnm.3408
- A.B. Konovalov, V.V. Vlasov, S.I. Samarin, I.D. Soloviev, A.P. Savitsky, V.V. Tuchin. J. Biomed. Opt., 27(12), 126001 (2022). DOI: 10.1117/1.JBO.27.12.126001
- S.I. Samarin, A.B. Konovalov, V.V. Vlasov, I.D. Solovyov, A.P. Savitsky, V.V. Tuchin. Comput. Opt., 47 (5), 673 (2023) (in Russian). DOI: 10.18287/2412-6179-CO-1295
- A.B. Konovalov, V.V. Vlasov, S.I. Samarin, A.S. Uglov, I.D. Solovyov, A.P. Savitsky, V.V. Tuchin. In: Novel Technologies in Medicine, Biology, Pharmacology and Ecology. Materials of the conference NT+ME'23 (Gurzuf, 2023) P. 161 (in Russian). DOI: 10.47501/978-5-6044060-3-8.161-169
- T.S. Blacker, Z.F. Mann, J.E. Gale, M. Ziegler, A.J. Bain, G. Szabadkai, M.R. Duchen. Nat. Commun., 5, 3936 (2014). DOI: 10.1038/ncomms4936
- M. Lukina, A. Orlova, M. Shirmanova, D. Shirokov, A. Pavlikov, A. Neubauer, H. Studier, W. Becker, E. Zagaynova, T. Yoshihara, S. Tobita, V. Shcheslavskiy. Opt. Lett., 42(4), 731 (2017). DOI: 10.1364/OL.42.000731
- E.A. Shirshin, M.V. Shirmanova, A.V. Gayer, M.M. Lukina, E.E. Nikonova, B.P. Yakimov, G.S. Budylin, V.V. Dudenkova, N.I. Ignatova, D.V. Komarov, V.V. Yakovlev, W. Becker, E.V. Zagaynova, V.I. Shcheslavskiy, M.O. Scully. Proc. Natl. Acad. Sci. USA., 119(9), e2118241119 (2022). DOI: 10.1073/pnas.2118241119
- V.V. Lyubimov, A.G. Kalintsev, A.B. Konovalov, O.V. Lyamtsev, O.V. Kravtsenyuk, A.G. Murzin, O.V. Golubkina, G.B. Mordvinov, L.N. Soms, L.M. Yavorskaya. Phys. Med. Biol., 47(12), 2109 (2002). DOI: 10.1088/0031-9155/47/12/308
- A.B. Konovalov. Physica Medica, 124, 104491 (2024). DOI: 10.1016/j.ejmp.2024.104491
- R. Gordon, R. Bender, G.T. Herman. J. Theor. Biol., 29(3), 471 (1970). DOI: 10.1016/0022-5193(70)90109-8
- A. Beck, M. Teboulle. SIAM J. Imaging Sci., 2(1), 183 (2009). DOI: 10.1137/080716542
- J.L. Lagarto, C. Gredi, F. Villa, S. Tisa, F. Zappa, V. Shcheslavskiy, F.S. Pavone, R. Cicchi. Sensors, 19, 2678 (2019). DOI: 10.3390/s19122678
- S.A. Prahl, M.J.C. van Gemet, A.J. Welch. Appl. Opt., 32(4), 559 (1993). DOI: 10.1364/AO.32.000559
- Multimodal Optical Diagnostics of Cancer. Ed. by V.V. Tuchin, J. Popp, V. Zakharov (Springer, Cham, 2020). DOI: 10.1007/978-3-030-44594-2
- The fluorescent protein TagRFP [electronic resource]. URL: https://www.fpbase.org/protein/tagrfp
- S.J. Orfanidis. Introduction to Signal Processing (Prentice-Hall, Englewood Cliffs, New Jersey, 1996)
- D.S.C. Biggs, M. Andrews. Appl. Opt., 36(8), 1766 (1997). DOI: 10.1363/AO.36.001766
- Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli. IEEE Trans. Image Process., 13(4), 600 (2004). DOI: 10.1109/TIP.2003.819861
- B. Moulden, F.A.A. Kingdom, L. Gatley. Perception, 19(1), 79 (1990). DOI: 10.1068/p190079
- A.R. Gardner, C.K. Hayakawa, V. Venugopalan. J. Biomed. Opt., 19(6), 065003 (2014). DOI: 10.1117/1.JBO.19.6.065003
- J. Chen, V. Venugopal, X. Intes. Biomed. Opt. Express., 2(4), 871 (2011). DOI: 10.1364/BOE.2.000871
- X. Jiang, Y. Deng, Z. Luo, K. Wang, L. Lian, X. Yang, I. Meglinski, Q. Luo. Opt. Express, 22(26), 31948 (2014). DOI: 10.1364/OE.22.031948
- Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging. Ed. by V.V. Tuchin, D. Zhu, E.A. Genina (Ration Taylor \& Francis Group LLC, CRC Press, Boca, 2022). DOI: 10.1201/9781003025252
- D.K. Tuchina, I.G. Meerovich, O.A. Sindeeva, V.V. Zherdeva, A.P. Savitsky, A.A. Bogdanov Jr, V.V. Tuchin. J. Biophotonics, 13(11), e201960249 (2020). DOI: 10.1002/jbio.201960249
- X. Yang, T. Jiang, L. Liu, X. Zhao, X. Yu, M. Yang, G. Liu, Q. Luo. J. Innov. Opt. Health Sci., 16(1), 2330002 (2023). DOI: 10.1142/S1793545823300021
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.