Pathways to increase reconstruction accuracy and depth sensitivity in mesoscopic fluorescence molecular tomography
Konovalov A. B. 1, Vlasov V. V. 1, Samarin S. I. 1, Solovyev I. D. 2, Tuchina D. K. 3,4, Savitsky A. P. 2, Tuchin V. V. 3,4,5
1Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics, Snezhinsk, Russia
2Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Science, Moscow, Russia
3Saratov State University, Saratov, Russia
4Tomsk State University, Tomsk, Russia
5Institute of Precision Mechanics and Control, FRS “Saratov Scientific Center of the Russian Academy of Science, Saratov, Russia
Email: a_konov@mail.vega-int.ru, vitaly.vlasov.v@yandex.ru, samarine@mail.ru, gungnier@gmail.com, tuchinadk@mail.ru, apsavitsky@inbi.ras.ru, tuchinvv@mail.ru

PDF
Using the method of mesoscopic fluorescence molecular tomography (FMT), a phantom with a fluorophore forming periodic spatial structures was experimentally reconstructed. It is shown that the use of reflectance geometry with a high density of sources and detectors helps increase reconstruction accuracy and resolve structures 0.55 mm in diameter at depths to 5 mm inclusive. The depth sensitivity of the proposed mesoscopic FMT method was tested through the analysis of sensitivity functions obtained in a series of calculations by the modernized TurbidMC code that implements the Monte Carlo method. Calculated results demonstrate that the depth sensitivity can be improved due to the optical clearing of the object's surface layer. Keywords: fluorescence molecular tomography, mesoscopic mode, sensitivity function, phantom with fluorophore, periodic spatial structure, reconstruction accuracy, depth sensitivity.
  1. C. Darne, Y. Lu, E.M. Sevick-Muraca. Phys. Med. Biol., 59 (1), R1 (2014). DOI: 10.1088/0031-9155/59/1/R1
  2. Y. An, K. Wang, J. Tian. Visual Comput. Industry Biomed. Art., 1, 1(2018). DOI: 10.1186/s42492-018-0001-6
  3. A. Dunn, D. Boas. Opt. Lett., 25 (24), 1777 (2000). DOI: 10.1364/OL.25.001777
  4. E.M.C. Hillman, D.A. Boas, A.M. Dale, A.K. Dunn. Opt. Lett., 29(14), 1650 (2004). DOI: 10.1364/OL.29.001650
  5. F. Yang, M.S. Ozturk, L. Zhao, W. Cong, G. Wang, X. Intes. IEEE Trans. Biomed. Eng., 62 (1), 248 (2015). DOI: 10.1109/TBME.2014.2347284
  6. S. Gao, M. Li, J.T. Smith, X. Intes. Biomed. Opt. Express., 13(9), 4637 (2022). DOI: 10.1364/BOE.460216
  7. A.B. Konovalov, V.V. Vlasov. Proc. SPIE, 11457, 1145703 (2020). DOI: 10.1117/12.2560139
  8. A.B. Konovalov, V.V. Vlasov, A.S. Uglov. Int. J. Numer. Meth. Biomed. Eng., 37(1), e3408 (2021). DOI: 10.1002/cnm.3408
  9. A.B. Konovalov, V.V. Vlasov, S.I. Samarin, I.D. Soloviev, A.P. Savitsky, V.V. Tuchin. J. Biomed. Opt., 27(12), 126001 (2022). DOI: 10.1117/1.JBO.27.12.126001
  10. S.I. Samarin, A.B. Konovalov, V.V. Vlasov, I.D. Solovyov, A.P. Savitsky, V.V. Tuchin. Comput. Opt., 47 (5), 673 (2023) (in Russian). DOI: 10.18287/2412-6179-CO-1295
  11. A.B. Konovalov, V.V. Vlasov, S.I. Samarin, A.S. Uglov, I.D. Solovyov, A.P. Savitsky, V.V. Tuchin. In: Novel Technologies in Medicine, Biology, Pharmacology and Ecology. Materials of the conference NT+ME'23 (Gurzuf, 2023) P. 161 (in Russian). DOI: 10.47501/978-5-6044060-3-8.161-169
  12. T.S. Blacker, Z.F. Mann, J.E. Gale, M. Ziegler, A.J. Bain, G. Szabadkai, M.R. Duchen. Nat. Commun., 5, 3936 (2014). DOI: 10.1038/ncomms4936
  13. M. Lukina, A. Orlova, M. Shirmanova, D. Shirokov, A. Pavlikov, A. Neubauer, H. Studier, W. Becker, E. Zagaynova, T. Yoshihara, S. Tobita, V. Shcheslavskiy. Opt. Lett., 42(4), 731 (2017). DOI: 10.1364/OL.42.000731
  14. E.A. Shirshin, M.V. Shirmanova, A.V. Gayer, M.M. Lukina, E.E. Nikonova, B.P. Yakimov, G.S. Budylin, V.V. Dudenkova, N.I. Ignatova, D.V. Komarov, V.V. Yakovlev, W. Becker, E.V. Zagaynova, V.I. Shcheslavskiy, M.O. Scully. Proc. Natl. Acad. Sci. USA., 119(9), e2118241119 (2022). DOI: 10.1073/pnas.2118241119
  15. V.V. Lyubimov, A.G. Kalintsev, A.B. Konovalov, O.V. Lyamtsev, O.V. Kravtsenyuk, A.G. Murzin, O.V. Golubkina, G.B. Mordvinov, L.N. Soms, L.M. Yavorskaya. Phys. Med. Biol., 47(12), 2109 (2002). DOI: 10.1088/0031-9155/47/12/308
  16. A.B. Konovalov. Physica Medica, 124, 104491 (2024). DOI: 10.1016/j.ejmp.2024.104491
  17. R. Gordon, R. Bender, G.T. Herman. J. Theor. Biol., 29(3), 471 (1970). DOI: 10.1016/0022-5193(70)90109-8
  18. A. Beck, M. Teboulle. SIAM J. Imaging Sci., 2(1), 183 (2009). DOI: 10.1137/080716542
  19. J.L. Lagarto, C. Gredi, F. Villa, S. Tisa, F. Zappa, V. Shcheslavskiy, F.S. Pavone, R. Cicchi. Sensors, 19, 2678 (2019). DOI: 10.3390/s19122678
  20. S.A. Prahl, M.J.C. van Gemet, A.J. Welch. Appl. Opt., 32(4), 559 (1993). DOI: 10.1364/AO.32.000559
  21. Multimodal Optical Diagnostics of Cancer. Ed. by V.V. Tuchin, J. Popp, V. Zakharov (Springer, Cham, 2020). DOI: 10.1007/978-3-030-44594-2
  22. The fluorescent protein TagRFP [electronic resource]. URL: https://www.fpbase.org/protein/tagrfp
  23. S.J. Orfanidis. Introduction to Signal Processing (Prentice-Hall, Englewood Cliffs, New Jersey, 1996)
  24. D.S.C. Biggs, M. Andrews. Appl. Opt., 36(8), 1766 (1997). DOI: 10.1363/AO.36.001766
  25. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli. IEEE Trans. Image Process., 13(4), 600 (2004). DOI: 10.1109/TIP.2003.819861
  26. B. Moulden, F.A.A. Kingdom, L. Gatley. Perception, 19(1), 79 (1990). DOI: 10.1068/p190079
  27. A.R. Gardner, C.K. Hayakawa, V. Venugopalan. J. Biomed. Opt., 19(6), 065003 (2014). DOI: 10.1117/1.JBO.19.6.065003
  28. J. Chen, V. Venugopal, X. Intes. Biomed. Opt. Express., 2(4), 871 (2011). DOI: 10.1364/BOE.2.000871
  29. X. Jiang, Y. Deng, Z. Luo, K. Wang, L. Lian, X. Yang, I. Meglinski, Q. Luo. Opt. Express, 22(26), 31948 (2014). DOI: 10.1364/OE.22.031948
  30. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging. Ed. by V.V. Tuchin, D. Zhu, E.A. Genina (Ration Taylor \& Francis Group LLC, CRC Press, Boca, 2022). DOI: 10.1201/9781003025252
  31. D.K. Tuchina, I.G. Meerovich, O.A. Sindeeva, V.V. Zherdeva, A.P. Savitsky, A.A. Bogdanov Jr, V.V. Tuchin. J. Biophotonics, 13(11), e201960249 (2020). DOI: 10.1002/jbio.201960249
  32. X. Yang, T. Jiang, L. Liu, X. Zhao, X. Yu, M. Yang, G. Liu, Q. Luo. J. Innov. Opt. Health Sci., 16(1), 2330002 (2023). DOI: 10.1142/S1793545823300021

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru