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Using the method of mesoscopic fluorescence molecular tomography (FMT), a phantom with a fluorophore

forming periodic spatial structures was experimentally reconstructed. It is shown that the use of reflectance

geometry with a high density of sources and detectors helps increase reconstruction accuracy and resolve structures

0.55mm in diameter at depths to 5mm inclusive. The depth sensitivity of the proposed mesoscopic FMT method

was tested through the analysis of sensitivity functions obtained in a series of calculations by the modernized

TurbidMC code that implements the Monte Carlo method. Calculated results demonstrate that the depth sensitivity

can be improved due to the optical clearing of the object’s surface layer.
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Introduction

In recent years, fluorescence molecular tomography

(FMT) has become quite widespread as a molecular

imaging method used to solve problems in experimental

oncology [1,2]. As you know, the low spatial resolution is

the
”
sticking point“ in diffusion imaging. One of the ways to

improve resolution is to switch from the macroscopic data

recording mode to the mesoscopic mode [3,4], in which

sources and detectors are located at small distances from

each other (up to 10mm) and relatively small areas of

interest are restored (on the order of 10× 10× 10mm3).
This transition allowed the researchers to finally achieve

the desired submillimeter resolution for FMT images [5,6]).
However, the transition to the mesoscopic mode is in-

evitably associated with an increased anisotropy of light

scattering and a deterioration in the depth sensitivity of

the FMT method. Therefore, the relevant question is what

depths are available for reproducing fluorescent structures

using mesoscopic FMT.

In the last few years, the authors of this paper have de-

veloped and partially investigated an original time-resolved

FMT method based on an asymptotic approximation of the

fluorescence source function [7–11]. A special feature of

the proposed FMT method is that it is potentially capable

of reconstructing the spatial distributions of not only the flu-

orophore absorption coefficient (or fluorophore concentra-

tion), but also the distributions of the fluorescence lifetime.

This parameter is particularly appreciated by researchers in

the field of experimental oncology and fluorescent imaging,

as it is resistant to changes in fluorescence intensity when

measured on living objects, is highly sensitive to changes

in the molecular environment of fluorescent biosensors,

and provides important information about the processes

occurring in tumor tissues at the molecular level [12–14].
The theory of the proposed mesoscopic FMT method is

described in Ref. [8]. The case of macroscopic FMT was

studied in Refs. [7,8] using numerical experiments. The

program TurbidMC, which implements the Monte Carlo

method, is described in Ref. [10]. This program is used

for modeling fluorescence signals and calculating sensitivity

functions for mesoscopic FMT. Some preliminary results of

these studies are analyzed in Ref. [11]. The first physical

experiment on the reconstruction of a phantom with a

fluorophore is described in Ref. [9]. In this experiment,

the mesoscopic data recording mode was used for the first

time. It was possible to correctly restore the distributions of

the fluorophore absorption coefficient and the fluorescence

lifetime. However, the fluorophore was located at a depth

of up to 4 mm and was a cylinder of relatively large

diameter (3mm), which did not allow us to draw any

definite conclusions about either the spatial resolution of

the method or its depth sensitivity. Thus, the relevant

question is whether our method is capable of reproducing

submillimeter-sized fluorescent structures at depths of more

than 4mm. To answer this question, an experiment was
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conducted to reconstruct a phantom with a fluorophore

forming periodic spatial structures. This paper describes the

experiment and presents its results. Since they turned out to

be worse than expected, a number of additional calculations

were required to assess the potential for improving the

accuracy of reconstruction and the depth sensitivity of the

mesoscopic FMT method. The results and analysis of these

calculations are also presented in this paper.

Reconstruction problem setup

A variant of the mesoscopic FMT method, which was

used in Ref. [9], assumed a two-step approach to solving the

reconstruction problem. In the first step, the so-called fluo-

rescence parameter distribution function is restored, which

contains both the distribution of the fluorophore absorption

coefficient and the distribution of the fluorescence lifetime.

In the second step, these distributions are separated by

solving an overdetermined system of equations. Since

the separation stage introduces additional errors into the

reconstruction results, and given the complexity of the task

set in this paper, it was decided at this stage of research

to limit the reconstruction to only the distribution of the

fluorophore absorption coefficient. In this case, the lifetime

of fluorescence was assumed to be an a priori set constant.

Thus, the mesoscopic FMT method used in this work is

as follows. The reconstruction problem is reduced to the

inversion of the Fredholm linear integral equation of the

first kind:

p(rs , rd, t) = k
∫

V

W (rs , rd, r, t)µa f (r)d
3r (1)

for the unknown distribution of the fluorophore absorption

coefficient µa f (r). In formula (1) p(rs , rd, t) is the time-

resolved fluorescence signal (Fluorescence Temporal Point

Spread Function, FT-PSF) excited by an instantaneous

source at point rs at time ts = 0 and recorded at point rd

at time t, k is the dimensionless proportionality coefficient,

W (rs , rd, r, t) is the sensitivity function calculated using the

TurbidMC program [10] and representing a 3D-distribution

of weighting coefficients for a given source−detector link

(SD link). The following expression is valid in our case for

the coefficient k

k =
4Dcγ

τ ν2 + 4Dc
, (2)

where D and c are the photon diffusion coefficient and the

speed of light in the medium at the wavelength of exciting

radiation, γ is the fluorescence quantum yield, τ is a priori

value of the fluorescence lifetime, ν is the average velocity

of the center of mass of the instantaneous distribution of

photons along their average trajectory [8,15].
Next, equation (1) is discretized as it is described, for

example, in Ref. [8], and the inverse problem is reduced to

solving the system of linear algebraic equations

Wµ = p, (3)
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Figure 1. Geometry of data recording and values of all the

different distances between sources and detectors (a), photo of

the probe (left — setup side, right — phantom side) (b).

where W ≡ {Wi, j}IJ
1,1 is the sensitivity matrix, which con-

tains discrete transposed sensitivity functions calculated for

all I SD links involved in reconstruction; µ ≡ {µ j}J
1 is a vec-

tor describing the desired distribution µa f (r); p ≡ {pi}I
1 is

a vector of measurement data into which the results of pro-

cessing the experimentally measured fluorescent temporal

responses (FTR) are recorded.

Since system (3) is obtained, as a rule, strongly un-

derdetermined, optimization algorithms with regularization

are used to solve it, for example, algorithms based on

compressed sensing theory [16]. ART-FIST algorithm (alge-
braic reconstruction technique with fast iterative shrinkage

thresholding) is chosen in this paper to solve (3), com-

bining the Gordon algebraic reconstruction [17] and the

fast iterative shrinkage-thresholding algorithm of Beck and

Teboulle [18]. The algorithm is described in detail in Ref. [8]
and has proven its efficiency in the reconstruction of sparse

fluorescent tomograms.

Experiment and data preprocessing

An experiment on scanning a phantom with a fluorophore

was conducted at the Research Center of Biotechnology

Optics and Spectroscopy, 2025, Vol. 133, No. 5
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RAS (Moscow, Russia). In the experiment, a reflectance

geometry was used with a scheme of the location of the

input points of exciting radiation (sources) and the output

points of fluorescence (detectors), as shown in Fig. 1, a.

The figure on the right shows the values of all the different

distances between the sources and the detectors for which

the sensitivity functions were calculated. According to

this scheme, a probe was developed containing 41 fibers

with a core diameter of 100µm OKM-UV-100/110/150-

170 NA 0.22 (STC Fiber-Optic Devices, Russia), fixed in

two holders. A photo of the probe is shown in Fig. 1, b.

The fluorescence tomography setup was designed using

ThorLabs optomechanical units (USA), an LDH D-TA-560B

PicoQuant laser (Germany), and a KineFLEX QiOptiq opti-

cal fiber light guide (UK), GVSM002 Thorlabs galvanome-

ter (USA), SL50-CLS ThorLabs Scan Lens, TTL200-A

ThorLabs Tube Lens, Di03-R488/561-t1-25 × 36 Semrock

dichroic mirror (USA), HQ585/40 and ZET561NF emission

filters (Chroma, USA), 2× /0.10 NA PlanApo lens (Nikon,
Japan), SPC3 avalanche photodiode array (Micro Photon

Devices, Italy) and 4× /0.1 NA Plan Achromat lens

(Nikon, China). It can be noted that detection systems

such as SPC3 are increasingly being used in fluorescence

imaging and lifetime spectroscopy [19]. The scheme of the

experimental FMT setup is shown in Fig. 2, a, and its image

is shown in Fig. 2, b.
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Figure 2. Experimental setup scheme (a) and its general

photo (b).
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Figure 3. Area of reconstruction of the phantom with the size of

10× 10× 10mm3 , containing periodic spatial structures.

The mating part of the optical probe was placed in the

focal plane of the phantom for introducing the exciting

radiation into optical fibers and recording the fluorescent

signal, fixing the probe in a 3-position micrometer slide with

a rotating holder. The centers of the cores of each optical

fiber were aligned with the points of light input and output

in accordance with the scheme of Fig. 1, a.

Silicone Sylgard 184 (Dow Corning, USA) with a mass

fraction of TiO2 0.13% was chosen as the material of the

phantom. In order to adequately calculate the sensitivity

functions, measurements of the optical parameters of the

phantom sample were performed at the Saratov National

Research State University named after N. G. Chernyshevsky

(Saratov, Russia): absorption coefficient, scattering coeffi-

cient, reduced scattering coefficient, scattering anisotropy

factor and refractive index. First, diffuse reflection and total

transmission spectra of the sample were recorded in the

spectral range of 500−700 nm with a step width of 2 nm

using Lambda 950 spectrophotometer (Perkin Elmer, USA).
Then, the collimated transmission spectrum of the sample

was recorded using USB4000-Vis-NIR fiber-optic spectrom-

eter (Ocean Optics, USA) in the same spectral range. The

diffuse reflection, collimated, and total transmission spectra

of the phantom sample were used to calculate the spectral

dependences of the absorption coefficient, the scattering

anisotropy factor, and the reduced scattering coefficient

using the inverse adding-doubling method [20]. The

refractive index of the phantom sample was measured using

Abbe DR-M2/1550 multiwave refractometer (Atago, Japan)
at a wavelength of 589 nm. The scattering coefficient µs of

the sample was determined using the expression [21]

µ′

s = µs (1− g), (4)

where µ′

s is the reduced scattering coefficient, g is the

scattering anisotropy factor.
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Values of optical parameters of the phantom and fluorescence

parameters

Parameter Value

Phantom absorption coefficient, mm−1 0.09

Phantom scattering coefficient, mm−1 1.82

Phantom scattering anisotropy factor 0.45

Phantom refractive index 1.43

Phantom absorption coefficient, mm−1 0.17

Fluorophore scattering coefficient, mm−1 0

Quantum yield of fluorescence 0.48

Fluorescence lifetime, ps 2200

Holes with a diameter of 0.55mm were formed in the

phantom to be filled with a solution with fluorophore so that

the fluorophore formed periodic spatial structures at depths

of 3, 5, 7, and 9mm. The reconstruction area with the

size of 10× 10× 10mm3 with periodic spatial structures

is shown in Fig. 3. The fluorescent protein TagRFP with

a concentration corresponding to an absorption coefficient

of 0.17mm−1 (wavelength of 561 nm) was selected as

the fluorophore. The fluorescence parameters of this

fluorophore are listed on the website [22]. Since the

wavelengths of excitation (561 nm) and emission (585 nm)
are very close, and it is sufficient to obtain rough estimates

of the parameters (with an error of about 15%) for

calculating the sensitivity functions, the same values of the

optical parameters of the phantom and the fluorescence

parameters were used for both wavelengths, which are given

in the table.

The preprocessing of the measured FTR was performed

using the MATLAB package according to the algorithm de-

scribed in [9], and consisted in noise compensation of each

FTR and its deconvolution with the instrumental response,

also measured in the experiment, in order to evaluate

the FT-PSF. To compensate for noise, the Savitsky−Golay

filter [23] was used, implemented in MATLAB by the

operator sgolayfilt (·) . Deconvolution of smoothed FTR

with instrumental response was performed using the accel-

erated Lucy−Richardson algorithm [24], which has proven

its efficiency in processing both one-dimensional signals and

images. This algorithm is implemented in the MATLAB

package by the operator deconvlucy(·). Then for each the

ith FT-PSF resulted, we calculated

pi =

td∫

0

8B8PT i(t)dt, (5)

where td is the time of
”
cutoff “ of pulse along the leading

edge (the detector delay time). It was the values of (5) that

were written into the measurement data vector p.

Calculation and analysis of sensitivity
functions

A phantom with a certain structural filling with a fluo-

rophore, different from the real phantom, was numerically

defined for calculating the ten sensitivity functions for the

distances shown in Fig. 1, a. Just like the real phantom

(Fig. 3), the numerical phantom had periodic structures at

the same depths of 3, 5, 7, and 9mm. But these structures

were formed not by cylinders, but by parallelepipeds with

a square cross-section with the size of 0.5× 0.5mm2. In

addition, the row at each depth consisted of not four, but five

structures. This was done intentionally in order to artificially

set a certain
”
error“ when using a priori knowledge. Thus,

a priori information was used only about the depths of the

structures, but not about their exact shape and location.

The sensitivity functions were calculated not for the cube of

10× 10× 10mm3 (the selected size of the reconstruction

area), but for the parallelepiped of 18× 10× 12mm3. In

this case, the source and detector were located at an

equal distance from the center of the face z = 0 of the

parallelepiped. This was done to attain the most complete

understanding of distribution features for not only short but

also long SD links.

The calculations were performed using the Tur-

bidMC program on a multiprocessor computing facility

of Zababakhin All-Russia Research Institute of Technical

Physics (Snezhinsk, Russia). Each calculation considered

from 109 to 1010 histories, each of which began by

introducing an excitation photon into a numerically specified

phantom and continued by modeling its trajectory, as well

as the trajectories of the fluorescent photons generated by

it. All trajectories were simulated until the photon’s weight

decreased to a given value (in our case 10−12). The time

for one calculation of this series was 10−15 h.

As examples, the results of calculations of sensitivity

functions for the shortest (1.41mm) and longest (9.9mm)
SD-link are shown in Fig. 4 as 3D distributions of the

weighting coefficients. Visual analysis of 3D images in

Fig. 4 shows that the obtained distributions have extensive

sparse zones and are very far from smooth functions. This

suggests the need to improve the statistical accuracy of

calculations. In order to pre-evaluate the potential possibility

of reproducing various layers of periodic spatial structures

of the phantom during reconstruction using the calculated

sensitivity functions, the following sequence of actions was

performed. First, each SD link in Fig. 1, a was assigned

its own sensitivity function. Moreover, this was done, of

course, for the cube of size 10x10x10mm3. Secondly, all

sensitivity functions were summed up and a 3D picture

of the distribution of the sum over the reconstruction

area was obtained (Fig. 5, a), as well as cross-sections of

this distribution at the depths of the periodic structures

(Fig. 5, b−e). It can be seen from Fig. 5 that the space

is well filled in the case of depths 3 and 5mm (Fig. 5, b, c),
it is worse at a depth of 7mm (Fig. 5, d), the distribution

becomes sparse at a depth of 9 mm (Fig. 5, e). Thus,

Optics and Spectroscopy, 2025, Vol. 133, No. 5
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Figure 4. 3D images of sensitivity functions calculated for two distances between the source and the detector: 1.41 (a), 9.9mm (b).

even before the reconstruction, it became clear that serious

problems could arise with reproducing structures at depths

of 7 and 9mm.

Reconstruction results

The reconstruction area with the size 10× 10× 10mm3

was restored, the voxel size was set to 0.1mm. Thus,

the number of voxels and, accordingly, columns of the

sensitivity matrix W was equal to J = 1000000. The number

of SD links and rows of the matrix was I = 16× 25 = 400

. As mentioned above, the ART-FIST algorithm described

in detail in Ref. [8] was used for reconstruction. The

algorithm parameters were also selected according to how

it was proposed in the same paper. The reconstruction

results are shown in Fig. 6. Fig. 6, a shows a 3D image.

Figures 6, b−e demonstrate 2D sections of a 3D image

at depths of 3, 5, 7, and 9mm of periodic structures.

Here and further, the image palettes are graded in inverse

millimeters. It can be seen that structures at a depth of

3 mm are reproduced with distortion (Fig. 6, b). Only

fragments of structures are visible at the depth of 5mm

(Fig. 6, c). Depths of 7 and 9mm were generally unavailable

for reproduction (Fig. 6, d, e). Quantitative image quality

characteristics such as the correlation coefficient [25] and

the deviation factor [26] are calculated for 2D images shown

in Fig. 6, b, c. The obtained values are 0.7965 and 0.6207

for the image of Figure 6(b) and 0.6051 and 0.8695 for

the image of Figure 6(c), respectively. These values also

indicate the unsatisfactory quality of the recovered CT scans.

Thus, the following issues have become relevant. Is it

possible to improve the quality of reproduction of structures

at depths of 3 and 5mm? Is it possible to make depths of

7 and 9mm available for reproduction?

About possibilities for improving
reconstruction accuracy

The first thing that was done to answer the questions

was to check the correctness of the preprocessing of the

measured FTR and the formation of a vector of measure-

ment data p. For this purpose, a numerical experiment

was set up that exactly repeated the physical experiment.

For this purpose, a numerical experiment was set up that

exactly repeats the physical experiment. The reconstruction

results turned out to be very close to those shown in Fig. 6.

Thus, the issue turned out to be not the correctness of the

preprocessing of experimental data, but something else.

Then two hypotheses were put forward. The first is the

insufficient density of sources and receivers (indeed, the

number of links 16× 25 = 400 turned out to be relatively

small). The second is the unsatisfactory statistical accuracy

of the calculation of sensitivity functions. Another numerical

experiment was performed to test the first hypothesis, in

which the number of sources and detectors was increased

by 4 times. This was done as follows. The geometric system

of Fig. 1, a shifted in its plane first by 1mm horizontally,

then by 1mm vertically, and finally by
√
2/2mm diagonally.

Thus, three more geometric systems (or subsystems) were

formed, which were combined with the original into a new

geometry. The new geometry of the sources and detectors

resulted in 4 times more, i.e. 64 and 100, respectively. As

for the SD links only the links within each of the subsystems

were used, the links of sources and detectors between

different subsystems were not involved in the reconstruction.

This made it possible to avoid additional time-consuming

calculations of sensitivity functions. As a result, in the new

geometry, the number of SD-links was also 4 times greater

than in the geometry of Fig. 1, a.

As a result, 4 times more SD links were obtained in the

new geometry than in the geometry of Fig.1, a. It follows

Optics and Spectroscopy, 2025, Vol. 133, No. 5
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Figure 5. 3D distribution of the sum of sensitivity functions (a) and its cross-sections at a depth of 3 (b), 5 (c), 7 (d), 9mm (e).

from the visual analysis of Fig. 7 that it was possible to

significantly improve the quality of reproduction of periodic

structures at depths of 3 and 5 mm (Fig. 7, b, c, respectively).

It can be seen that the cylinders of the structures are

well resolved relative to each other. The obtained gain in

reconstruction accuracy is also evidenced by the values of

the correlation coefficient and the deviation factor calculated

for the images in Fig. 7, b, c: 0.9117 and 0.2114 for the

image of Fig. 7,b and 0.8643 and 0.3338 for the image

of Fig. 7, c. But the structures at depths of 7 and 9mm

Optics and Spectroscopy, 2025, Vol. 133, No. 5
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Figure 6. The results of reconstruction of periodic spatial structures: 3D image (a) and its 2D sections at the depths of the structures

of 3 (b), 5 (c), 7 (d), 9mm (e).

still could not be reproduced (Fig. 7, d, e). Thus, it was

possible to show that the use of
”
high density geometry“

can significantly improve the accuracy of reconstruction of

structures at depths of 3 and 5 mm, but still does not

improve the depth sensitivity of the proposed method of

mesoscopic FMT.

As for the hypothesis about the unsatisfactory statistical

accuracy of calculating sensitivity functions, the results

Optics and Spectroscopy, 2025, Vol. 133, No. 5
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Figure 7. Reconstruction results for the case of high-density geometry: 3D image (a) and its 2D sections at the depths of the structures

of 3 (b), 5 (c), 7 (d), 9mm (e).

shown in Fig. 4−6 clearly indicate the need to increase

it. There were several ways to go. We were particularly

interested in the Gardner method [27], according to which

not only the forward calculation of the sensitivity function

is performed, but also the adjoint one. In the adjoint

calculation, the detector is placed in the position of the
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source, and the source is placed in the position of the

detector. Then a superposition of two calculations is

performed — forward and adjoint. The calculation examples

presented in Ref. [27] show that it is possible to obtain an

almost smooth sensitivity function.

At the present stage of research, it was decided to take

a different way and modernize the TurbidMC program by

introducing an artificial process of δ-scattering. The δ-

scattering process is characterized by the introduction of a

coefficient µδ for this
”
fictitious“ interaction, the magnitude

of which is determined by the probability of the formation

of a fluorescent photon in the body of the fluorophore. The

path length l is selected from the distribution

p(l) = µt exp(−µtl) (6)

with attenuation coefficient µt = µa + µs + µδ , where µa

and µs are absorption and scattering coefficients, respec-

tively. The weight of a photon after interaction in a medium

is calculated using the formula

ωk+1 = ωk
µs + µδ

µt
. (7)

If the interaction occurs in a fluorophore, then a weight is

assigned to the fluorescent photon.

ω
f lu
k+1 = ωk

µa

µt
. (8)

In this case, the scattering process is divided into two

processes: normal scattering and δ-scattering, which are ran-

domly selected according to the probabilities µs/(µs + µδ)
and µδ/(µs + µδ) , respectively. The choice of the value µδ
does not affect the values of the calculated quantitates,

but it does affect the variance of the estimated values,

and therefore the statistical error of the estimated value.

The choice of µδ depends on the specific conditions of

the problem and is related to the characteristic size of the

fluorophore inclusions d by the expression

µδ ≈
1

d
− (µa + µs ). (9)

Such an upgrade of the TurbidMC program has improved

the statistical accuracy of sensitivity function calculations.

Some of the calculation results for the upgraded program

are given in the next section.

Possible ways to increase the depth
sensitivity

Sensitivity functions were calculated in this experiment

taking into account a priori knowledge of the depths of

periodic structures with fluorophore. As a result, not

entirely satisfactory results were obtained. What if we

change the conditions for calculating sensitivity functions

appropriately? One of the options is the calculation for a

scattering phantom without a fluorophore — the case of

diffusion optical tomography at the wavelength of exciting

radiation. It is proved in Refs. [28,29] that the calculations

of the sensitivity function for an object with and without

a fluorophore are virtually identical if the absorption coef-

ficients of the object and the fluorophore are close (in our

case, this is not entirely true, since the absorption coefficient

of the fluorophore is almost twice the absorption coefficient

of the phantom (see Table)). Another option for changing

the calculation conditions is to assume that the fluorophore

occupies the entire reconstruction area. However, in this

case, it will be necessary to artificially set some non-zero

scattering for the fluorophore, otherwise such a calculation

makes no sense at all. It should be noted that such an

option has not yet been substantiated by anyone, and so

far it seems problematic to adapt the proposed method of

mesoscopic FMT to it. Nevertheless, to test the hypothesis

of a likely increase in depth sensitivity, three calculations

were performed using the modified TurbidMC program for

the three model scattering media presented above. The

sensitivity comparison criterion for different calculations was

the depth of
”
penetration“ of the sensitivity function inside

the object.

Figure 8 shows three sensitivity functions (more precisely,

their effective 2D cross-sections with a plane passing

through the centers of the source and detector) calculated

using the modernized program. The distance between

the source and the detector is 5mm, and the depth of

the object (the height of the images of the figure) is

9mm. Fig. 8, a shows the calculation result using a

priori information about the depths of the structures. It

was also considered during the experiment. In contrast

to Fig. 4, Fig. 8, a shows the structures themselves —
they are clearly visible at a depth of 3mm and barely

noticeable at a depth of 5mm. This means that it has

indeed been possible to improve the statistical accuracy of

calculations by introducing a fictitious δ-scattering process

into the program. In this case, the depth of penetration of

the sensitivity function into the object can be estimated as

∼ 6mm. Fig. 8, b shows the calculation result for an object

without a fluorophore. Unfortunately, the penetration depth

was ∼ 4mm. Therefore, this calculation method cannot be

an alternative to Fig. 8, a. Fig. 8, c shows the calculation

results for an object that is a fluorophore with a scattering

coefficient two times lower than the scattering coefficient

of objects in the two previous calculations. With respect

to the penetration depth, the best result was obtained at

∼ 7mm. Thus, despite the fact that the conditions of the

latter calculation are somewhat artificial and currently not

fully justified, it makes sense to think about the possibility of

adapting the mesoscopic FMT method to such a calculation

of the sensitivity function.

Another possible way to increase depth sensitivity is to

use optical clearing of the surface layer of the object. The

effect of optical clearing on depth sensitivity was evaluated

using the simplest model, according to which the value of

the scattering coefficient in the layer from the surface to a

depth of 1 mm of the phantom was reduced by 2 times.
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≤ 6 mm

≤ 4 mm

≤ 7 mm

a b c

Figure 8. The results of calculations of sensitivity functions: with a priori knowledge of the depths of the fluorophore (a), an object

without a fluorophore (b), an object is a fluorophore with a scattering coefficient reduced by 2 times (c).

≤ 4 mm

≤ 5.5 mm ≤ 5.5 mm

a b c

Figure 9. The results of calculations of sensitivity functions: an object without clearing (a), the surface layer with a thickness of 1 mm

(b) is cleared, the entire object is cleared (c).

It is proved in Refs. [30,31] that such modification of

optical properties of biological tissue is practically achievable

through the use of clearing agents. In this case, the agent’s

duration is calculated in tens of minutes. Thus, two more

calculations of sensitivity functions were performed using

the upgraded TurbidMC program. All calculations were

performed for a scattering object without a fluorophore. The

visualization of the image of Fig. 8, b is repeated in Fig. 9, a,

for convenience of visual comparison. Figure 9, b shows the

calculation result for an object with a cleared surface layer

with a depth of 1mm. Finally, Fig. 9, c shows the calculation

result for a fully cleared object (an almost impossible

case, specially introduced for comparative analysis of the

results). In the last two calculations, very similar sensitivity

functions were obtained, the depth of penetration into

the object was ∼ 5.5mm in both cases. This is a very

interesting result, which can be explained by the fact

that it is the surface layer where the photons carrying

information about the object [32] are redistributed, and

which nevertheless requires confirmation in an experiment

on the reconstruction of a phantom with fluorophore. Of

course, only experiment will give an answer to the question

- whether structures will be reproduced at a depth of at

least 7 mm under the condition of optical clearing of the

surface layer. But since the depth of 5.5mm is definitely

greater than 4 mm (Fig. 9, a,b), it can already be safely

argued that optical clearing is a reliable way to increase the

depth sensitivity of the FMT method.

Conclusion

An experiment has been performed in this study to

reconstruct a phantom with a fluorophore forming periodic

spatial structures at various depths using mesoscopic FMT.
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The experimental results are presented and discussed, as

well as the results of a numerical experiment for the

geometry of a high density of sources and receivers. It

is shown that the use of high-density geometry is a reliable

method for improving the accuracy of reconstruction. In this

case, structures with a diameter of 0.55mm can be reliably

resolved at depths up to and including 5mm. Thus, it is

advisable to use only such geometry in subsequent physical

experiments. The paper also discusses ways to increase

the depth sensitivity of the mesoscopic FMT method. One

way is the selection of optimal conditions for calculating

sensitivity functions. At the moment, this way has only

been identified and requires additional research. Another

way is the optical clearing of the surface layer of the

scattering object. This way is justified in this paper by

calculations of sensitivity functions for an object without a

fluorophore. Of course, the next step is to verify this way by

experimenting with the reconstruction of a phantom with a

fluorophore, which is the goal of the upcoming research. It

is also necessary to further search for ways to improve the

statistical accuracy of sensitivity function calculations, which

is very important for obtaining high-quality reconstructions

of fluorescent images.
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