The possibility of using radiopaque and magnetic resonance agents to reduce light scattering by human nail bed tissues
Moldon P. A.1, Maksimov M. K.1, Surkov Yu. I.2, Lugovtsov A. E.1, Timoshina P. A.2, Pengcheng Li3, Priezzhev A. V.1
1Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
3Huazhong University of Science and Technology (HUST), Wuhan, China
Email: moldon.pavel@gmail.com

PDF
In the paper the possibility of using radiopaque and magnetic resonance agents, which are already used in clinical practice, for optical clearing of biological tissues was investigated. In vivo measurements of the degree of tissue optical clearing and evaluation of the effectiveness of the studied agents were carried out in the area of the nail bed of a human finger using optical coherence tomography technique. It was shown that almost all the agents used are effective for optical clearing of the tissue in the studied area at certain depths. For example, after applying the gadovistoledR magnetic resonance agent, the extinction coefficient of probing beam decreased by 16±8 % at a depth from 0 to 50 μm. When using visipacueoledR radiopaque agent in combination with polypropylene glycol, the extinction coefficient decreased by 30±13 % for the same depth. The results of the work make it possible to expand application scope of radiopaque and magnetic resonance agents to optical clearing of tissues and visualization of capillaries. Keywords: Optical clearing, radiopaque agents, magnetic resonance agents, optical coherence tomography, extinction coefficient.
  1. D.K. Tuchina, I.G. Meerovich, O.A. Sindeeva, V.V. Zherdeva, A.P. Savitsky, A.A.J. Bogdanov, V.V. Tuchin. J. Biophotonics, 13 (11), e201960249 (2020). DOI: 10.1002/jbio.201960249
  2. O. Hamdy, R.J. Abdelazeem. Public Heal. Int., 2 (1), 13 (2020). DOI: 10.14302/issn.2641-4538.jphi-19-3132
  3. L. Oliveira, V.V. Tuchin. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging (CRC press, USA, 2019), p. 107-138. DOI: 10.1201/9781003025252
  4. T. Yu, J. Zhu, D. Li, D. Zhu. iScience, 24 (3), 102178 (2021). DOI: 10.1016/j.isci.2021.102178
  5. P.A. Moldon, P.B. Ermolinskiy, A.E. Lugovtsov, P.A. Timoshina, E.N. Lazareva, Y.I. Surkov, Y.I. Gurfinkel, V.V. Tuchin, A.V. Priezzhev. J. Biophotonics, e202300524 (2024). DOI: 10.1002/jbio.202300524
  6. G. Morana, C. Cugini, G. Scatto, R. Zanato, M. Fusaro, A. Dorigo. Cancer imaging Off. Publ. Int. Cancer Imaging Soc., 13 (3), 350 (2013). DOI: 10.1102/1470-7330.2013.9018
  7. T.J. Barrs. Am. J. Heal. Pharm., 62 (19), 2026 (2005). DOI: 10.2146/ajhp040321
  8. K. Vermeer, J. Mo, J. Weda, H. Lemij, J. Boer. Biomed. Opt. Express, 5 (1), 322 (2013). DOI: 10.1364/BOE.5.000322
  9. J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, Z. Ma. J. Biomed. Opt., 24 (3), 1 (2019). DOI: 10.1117/1.JBO.24.3.035002
  10. G.T. Smith, N. Dwork, D. O'Connor, U. Sikora, K.L. Lurie, J.M. Pauly, A.K. Ellerbee. IEEE Trans. Med. Imaging, 34 (12), 2592 (2015). DOI: 10.1109/TMI.2015.2450197
  11. T.G. van Leeuwen, D.J. Faber, M.C. Aalders. IEEE J. Sel. Top. Quantum Electron., 9 (2), 227 (2003). DOI: 10.1109/JSTQE.2003.813299
  12. A.E. Lugovtsov, Y.I. Gurfinkel, P.B. Ermolinskiy, A.I. Maslyanitsina, L.I. Dyachuk, A.V. Priezzhev. Biomed. Opt. Express, 10 (8), 3974 (2019). DOI: 10.1364/BOE.10.003974

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru