Compact sapphire fiber-optic probe for intraoperative analysis of microcirculation disorders
Platonova A. A. 1, Aleksandrova P.V. 1, Kudryavtseva S. P.2, Zotov A.K. 1,3, Zaytsev K.I. 1, Dolganov K.B. 1, Kurlov V.N. 3, Dolganova I. N. 3,4
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Sechenov First Moscow State Medical University, N.V. Sklifosovskiy Institute of Clinical Medicine, Moscow, Russia
3Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
4Saratov State University, Saratov, Russia
Email: platlina.hibou2001@yandex.ru, aleksandrovapolina98@gmail.com, schennikova2001@gmail.com, AKZotov@hotmail.com, kirzay@gmail.com, dolganofff@mail.ru, kurlov59@gmail.com, in.dolganova@gmail.com

PDF
Microcirculation disorders and their consequences (hypoxia, ischemia, and subsequent tissue necrosis) are highly undesirable complications in clinical practice. Therefore, monitoring tissue conditions and detecting pathologies during surgical procedures is a crucial task in modern medicine. To address this challenge, this article presents a compact sapphire fiber probe based on the principle of spatially resolved diffuse reflectance analysis. This method enables the measurement of the effective attenuation coefficient of tissue and its temporal variations, thus allowing for intraoperative assessment of tissue state under conditions of impaired microcirculation. Due to the compact design of the probe, it can be used as an auxiliary tool for a wide range of surgical procedures and diagnostic applications. The feasibility of the proposed probe for detecting microcirculation disorders was analyzed experimentally, using two types of samples - a liquid phantom based on a lipid emulsion and hemoglobin and muscle tissue ex vivo - with the inserted enzyme. The effect of the enzyme on hemoglobin and muscle tissue, which mimics the effect of circulatory disturbance, qualitatively demonstrated the effectiveness of the sapphire probe. Keywords: diffuse reflectance, effective attenuation coefficient, sapphire, intraoperative monitoring.
  1. P.F. Do Amaral Tafner, F.K. Chen, R.R. Filho, T.D. Corr\^ea, R.C. De Freitas Chaves, A.S. Neto. Rev. Bras. Ter. Intensiva., 29 (2), 238-247 (2017). DOI: 10.5935/0103-507X.20170033
  2. C.A. den Uil, E. Klijn, W.K. Lagrand, J.J. Brugts, C. Ince, P.E. Spronk, M.L. Simoons. Prog. Cardiovasc. Dis., 51 (2), 161-170 (2008). DOI: 10.1016/j.pcad.2008.07.002
  3. N. Nakayama, S. Kuroda, K. Houkin, S. Takikawa, H. Abe. Acta. Neurochir., 143 (1), 17-24 (2001). DOI: 10.1007/s007010170133
  4. V.V. Tuchin, J. Popp, V. Zakharov. Multimodal Optical Diagnostics of Cancer (Springer Nature, Cham, 2020). DOI: 10.1007/978-3-030-44594-2
  5. D.K. Tuchina, V.V. Tuchin. J. Biomed. Photonics. \& Eng., 4 (2), 020201 (2018). DOI: 10.18287/jbpe18.04.020201
  6. R. Fitridge, M. Thompson. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists (The University of Adelaide Press, Adelaide, 2011). DOI: 10.1017/UPO9781922064004
  7. G.H. Pratt, E. Krahl. The American J. Surgery, 87 (5), 722-729 (1954). DOI: 10.1016/0002-9610(54)90171-3
  8. A. Raabe, J. Beck, R. Gerlach, M. Zimmermann, V. Seifert. Neurosurgery, 52 (1), 132-139 (2003). DOI: 10.1097/00006123-200301000-00017
  9. M. Mokry, P. Gal, M. Harakalova, Z. Hutnanova, J. Kusni r, S. Mozes, J. Sabo. Photochem. Photobiol., 83 (5), 1193-1196 (2007). DOI: 10.1111/j.1751-1097.2007.00132.x
  10. V.L. Fredrickson, J.J. Russin, B.A. Strickland, J. Bakhsheshian, A.P. Amar. Neurosurgy Clin. N. Am., 28 (4), 603-613 (2017). DOI: 10.1016/j.nec.2017.05.011
  11. A.I. Krupatkin. Hum. Physiol., 44, 581-591 (2018). DOI: 10.1134/S0362119718050079
  12. N. Hecht, J. Woitzik, J.P. Dreier, P. Vajkoczy. Neurosurg. Focus, 27 (4), E11 (2009). DOI: 10.3171/2009.8. FOCUS09148
  13. S.M.S. Kazmi, E. Faraji, M.A. Davis, Y.-Y. Huang, X.J. Zhang, A.K. Dunn. Biomed. Opt. Express, 6 (7), 2258-2608 (2015). DOI: 10.1364/boe.6.002588
  14. A.A. Kamshilin, V.V. Zaytsev, A.V. Lodygin, V.A. Kashchenko. Sci. Rep., 12 (1), 1143 (2022). DOI: 10.1038/s41598-022-05080-7
  15. O.V. Mamontov, A.V. Shcherbinin, R.V. Romashko, A.A. Kamshilin. Appl. Sci., 10 (18), 6192 (2020). DOI: 10.3390/APP10186192
  16. L. Wang, Z. Chen, Y. Li, J. Yang, Y. Li. Sci. Rep., 9 (1), 5980 (2019). DOI: 10.1038/s41598-019-42520-3
  17. E. Kiseleva, M. Ryabkov, M. Baleev, E. Bederina, P. Shilyagin, A. Moiseev, V. Beschastnov, I. Romanov, G. Gelikonov, N. Gladkova. Diagnostics, 11 (4), 705 (2021). DOI: 10.3390/diagnostics11040705
  18. M.G. Nichols, E.L. Hull, T.H. Foster. Appl. Opt., 36 (1), 93-104 (1997). DOI: 10.1364/AO.36.000093
  19. M. Larsson, H. Nilsson, T. Stromberg. Appl. Opt., 42 (1), 124-134 (2003). DOI: 10.1364/ao.42.000124
  20. Z. Shi, Y. Fan, H. Zhao, K. Xu. J. Biomed. Opt., 17 (6), 067004 (2012). DOI: 10.1117/1.jbo.17.6.06700
  21. C. Zhu, S. Chen, C.H.-K. Chui, B.-K. Tan, Q. Liu. Biomed. Opt. Express, 7 (2), 570-580 (2016). DOI: 10.1364/boe.7.000570
  22. R.C. Mesquita, N. Skuli, M.N. Kim, J. Liang, S. Schenkel, A.J. Majmundar, M.C. Simon, A.G. Yodh. Biomed. Opt. Express, 1 (4), 1173-1187 (2010). DOI: 10.1364/boe.1.001173
  23. S. Fantini, M.-A. Franceschini, J.S. Maier, S.A. Walker, B.B. Barbieri, E. Gratton. Opt. Eng., 34 (1), (1995). DOI: 10.1117/12.183988
  24. V.V. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed. (SPIE, California, 2015). DOI: 10.1117/3.1003040
  25. A.M.K. Nilsson, R. Berg, S. Andersson-Engels. Appl. Opt., 34 (21), 4609-4619 (1995). DOI: 10.1364/ao.34.004609
  26. B. Hallacoglu, A. Sassaroli, S. Fantini. PLoS One, 8 (5), e64095 (2013). DOI: 10.1371/journal.pone.0064095
  27. U. Utzinger, R.R. Richards-Kortum. J. Biomed. Opt., 8 (1), 121-147 (2003). DOI: 10.1117/1.1528207
  28. A.A. Platonova, P.V. Aleksandrova, A.I. Alekseeva, S.P. Kudryavtseva, A.K. Zotov, K.I. Zaytsev, K.B. Dolganov, I.V. Reshetov, V.N. Kurlov, I.N. Dolganova. J. Biophotonics, 17 (11), e202400368 (2024). DOI: 10.1002/jbio.202400368
  29. K. Stock, T. Stegmayer, R. Graser, W. Forster, R. Hibst. Lasers Surg. Med., 44 (10), 815-823 (2012). DOI: 10.1002/lsm.22091
  30. I.N. Dolganova, I.A. Shikunova, A.K. Zotov, M.A. Shchedrina, I.V. Reshetov, K.I. Zaytsev, V.V. Tuchin, V.N. Kurlov. J. Biophotonics, 13 (10), e202000164 (2020). DOI: 10.1002/jbio.202000164
  31. M. Ahmad, M. Ismail. J. Cosmet. Dermatol., 20 (11), 3610-3615 (2021). DOI: 10.1111/jocd.14006
  32. T.J. Polletto, A.K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, N.M. Fried. Lasers Surg. Med., 38 (8), 787-791 (2006). DOI: 10.1002/lsm.20382
  33. A.V. Pushkarev, S.S. Ryabikin, D.I. Tsiganov, A.K. Zotov, V.N. Kurlov, I.N. Dolganova. J. Biomed. Photonics \& Eng., 8 (4), 040501 (2022). DOI: 10.18287/JBPE22.08.040501
  34. I.N. Dolganova, A.K. Zotov, L.P. Safonova, P.V. Aleksandrova, I.V. Reshetov, K.I. Zaytsev, V.V. Tuchin, V.N. Kurlov. J. Biophotonics, 16 (3), e202200288 (2023). DOI: 10.1002/jbio.202200288
  35. H.E. LaBelle. J. Cryst. Growth, 50 (1), 8-17 (1980). DOI: 10.1016/0022-0248(80)90226-2
  36. V.N. Kurlov, S.N. Rossolenko, N.V. Abrosimov, K. Lebbou. Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques (John Wiley and Sons, Capstone, 2010). DOI: 10.1002/9781444320237.ch5
  37. W.G. Zijlstra, A. Buursma, O.W. van Assendelft. Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin (Taylor and Francis Group, London, 2021). DOI: 10.1201/9780429071096
  38. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin. J. Phys. D. Appl. Phys., 38 (15), 2543 (2005). DOI: 10.1088/0022-3727/38/15/004
  39. D.S. Myagkonosov, D.V. Abramov, I.N. Delitskaya, E.G. Ovchinnikova. Pisevye Sistemy/Food Systems, 5 (1), 47-54 (2022). DOI: 10.21323/2618-9771-2022-5-1-47-54
  40. B.M. Dunn. Chem. Rev., 102 (12), 4431-4458 (2002). DOI: 10.1021/cr010167q
  41. J. Motyan, F. Toth, J. Tozser. Biomolecules, 3 (4), 923-942 (2013). DOI: 10.3390/biom3040923
  42. A. Ishimaru. Appl. Opt., 28 (12), 2210-2215 (1989). DOI: 10.1364/ao.28.002210
  43. T.J. Farrell, M.S. Patterson, B. Wilson. Med. Phys., 19 (4), 879-888 (1992). DOI: 10.1118/1.596777
  44. H. Assadi, R. Karshafian, A. Douplik. Int. J. Photoenergy, 2014 (1), 471764 (2014). DOI: 10.1155/2014/471764
  45. N. Kollias, I.S. Seo, P.R. Bargo. J. Biophotonics, 3 (1-2), 15-24 (2010). DOI: 10.1002/jbio.200900066

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru