Compact sapphire fiber-optic probe for intraoperative analysis of microcirculation disorders
Platonova A. A.
1, Aleksandrova P.V.
1, Kudryavtseva S. P.
2, Zotov A.K.
1,3, Zaytsev K.I.
1, Dolganov K.B.
1, Kurlov V.N.
3, Dolganova I. N.
3,41Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Sechenov First Moscow State Medical University, N.V. Sklifosovskiy Institute of Clinical Medicine, Moscow, Russia
3Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
4Saratov State University, Saratov, Russia
Email: platlina.hibou2001@yandex.ru, aleksandrovapolina98@gmail.com, schennikova2001@gmail.com, AKZotov@hotmail.com, kirzay@gmail.com, dolganofff@mail.ru, kurlov59@gmail.com, in.dolganova@gmail.com
Microcirculation disorders and their consequences (hypoxia, ischemia, and subsequent tissue necrosis) are highly undesirable complications in clinical practice. Therefore, monitoring tissue conditions and detecting pathologies during surgical procedures is a crucial task in modern medicine. To address this challenge, this article presents a compact sapphire fiber probe based on the principle of spatially resolved diffuse reflectance analysis. This method enables the measurement of the effective attenuation coefficient of tissue and its temporal variations, thus allowing for intraoperative assessment of tissue state under conditions of impaired microcirculation. Due to the compact design of the probe, it can be used as an auxiliary tool for a wide range of surgical procedures and diagnostic applications. The feasibility of the proposed probe for detecting microcirculation disorders was analyzed experimentally, using two types of samples - a liquid phantom based on a lipid emulsion and hemoglobin and muscle tissue ex vivo - with the inserted enzyme. The effect of the enzyme on hemoglobin and muscle tissue, which mimics the effect of circulatory disturbance, qualitatively demonstrated the effectiveness of the sapphire probe. Keywords: diffuse reflectance, effective attenuation coefficient, sapphire, intraoperative monitoring.
- P.F. Do Amaral Tafner, F.K. Chen, R.R. Filho, T.D. Corr\^ea, R.C. De Freitas Chaves, A.S. Neto. Rev. Bras. Ter. Intensiva., 29 (2), 238-247 (2017). DOI: 10.5935/0103-507X.20170033
- C.A. den Uil, E. Klijn, W.K. Lagrand, J.J. Brugts, C. Ince, P.E. Spronk, M.L. Simoons. Prog. Cardiovasc. Dis., 51 (2), 161-170 (2008). DOI: 10.1016/j.pcad.2008.07.002
- N. Nakayama, S. Kuroda, K. Houkin, S. Takikawa, H. Abe. Acta. Neurochir., 143 (1), 17-24 (2001). DOI: 10.1007/s007010170133
- V.V. Tuchin, J. Popp, V. Zakharov. Multimodal Optical Diagnostics of Cancer (Springer Nature, Cham, 2020). DOI: 10.1007/978-3-030-44594-2
- D.K. Tuchina, V.V. Tuchin. J. Biomed. Photonics. \& Eng., 4 (2), 020201 (2018). DOI: 10.18287/jbpe18.04.020201
- R. Fitridge, M. Thompson. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists (The University of Adelaide Press, Adelaide, 2011). DOI: 10.1017/UPO9781922064004
- G.H. Pratt, E. Krahl. The American J. Surgery, 87 (5), 722-729 (1954). DOI: 10.1016/0002-9610(54)90171-3
- A. Raabe, J. Beck, R. Gerlach, M. Zimmermann, V. Seifert. Neurosurgery, 52 (1), 132-139 (2003). DOI: 10.1097/00006123-200301000-00017
- M. Mokry, P. Gal, M. Harakalova, Z. Hutnanova, J. Kusni r, S. Mozes, J. Sabo. Photochem. Photobiol., 83 (5), 1193-1196 (2007). DOI: 10.1111/j.1751-1097.2007.00132.x
- V.L. Fredrickson, J.J. Russin, B.A. Strickland, J. Bakhsheshian, A.P. Amar. Neurosurgy Clin. N. Am., 28 (4), 603-613 (2017). DOI: 10.1016/j.nec.2017.05.011
- A.I. Krupatkin. Hum. Physiol., 44, 581-591 (2018). DOI: 10.1134/S0362119718050079
- N. Hecht, J. Woitzik, J.P. Dreier, P. Vajkoczy. Neurosurg. Focus, 27 (4), E11 (2009). DOI: 10.3171/2009.8. FOCUS09148
- S.M.S. Kazmi, E. Faraji, M.A. Davis, Y.-Y. Huang, X.J. Zhang, A.K. Dunn. Biomed. Opt. Express, 6 (7), 2258-2608 (2015). DOI: 10.1364/boe.6.002588
- A.A. Kamshilin, V.V. Zaytsev, A.V. Lodygin, V.A. Kashchenko. Sci. Rep., 12 (1), 1143 (2022). DOI: 10.1038/s41598-022-05080-7
- O.V. Mamontov, A.V. Shcherbinin, R.V. Romashko, A.A. Kamshilin. Appl. Sci., 10 (18), 6192 (2020). DOI: 10.3390/APP10186192
- L. Wang, Z. Chen, Y. Li, J. Yang, Y. Li. Sci. Rep., 9 (1), 5980 (2019). DOI: 10.1038/s41598-019-42520-3
- E. Kiseleva, M. Ryabkov, M. Baleev, E. Bederina, P. Shilyagin, A. Moiseev, V. Beschastnov, I. Romanov, G. Gelikonov, N. Gladkova. Diagnostics, 11 (4), 705 (2021). DOI: 10.3390/diagnostics11040705
- M.G. Nichols, E.L. Hull, T.H. Foster. Appl. Opt., 36 (1), 93-104 (1997). DOI: 10.1364/AO.36.000093
- M. Larsson, H. Nilsson, T. Stromberg. Appl. Opt., 42 (1), 124-134 (2003). DOI: 10.1364/ao.42.000124
- Z. Shi, Y. Fan, H. Zhao, K. Xu. J. Biomed. Opt., 17 (6), 067004 (2012). DOI: 10.1117/1.jbo.17.6.06700
- C. Zhu, S. Chen, C.H.-K. Chui, B.-K. Tan, Q. Liu. Biomed. Opt. Express, 7 (2), 570-580 (2016). DOI: 10.1364/boe.7.000570
- R.C. Mesquita, N. Skuli, M.N. Kim, J. Liang, S. Schenkel, A.J. Majmundar, M.C. Simon, A.G. Yodh. Biomed. Opt. Express, 1 (4), 1173-1187 (2010). DOI: 10.1364/boe.1.001173
- S. Fantini, M.-A. Franceschini, J.S. Maier, S.A. Walker, B.B. Barbieri, E. Gratton. Opt. Eng., 34 (1), (1995). DOI: 10.1117/12.183988
- V.V. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed. (SPIE, California, 2015). DOI: 10.1117/3.1003040
- A.M.K. Nilsson, R. Berg, S. Andersson-Engels. Appl. Opt., 34 (21), 4609-4619 (1995). DOI: 10.1364/ao.34.004609
- B. Hallacoglu, A. Sassaroli, S. Fantini. PLoS One, 8 (5), e64095 (2013). DOI: 10.1371/journal.pone.0064095
- U. Utzinger, R.R. Richards-Kortum. J. Biomed. Opt., 8 (1), 121-147 (2003). DOI: 10.1117/1.1528207
- A.A. Platonova, P.V. Aleksandrova, A.I. Alekseeva, S.P. Kudryavtseva, A.K. Zotov, K.I. Zaytsev, K.B. Dolganov, I.V. Reshetov, V.N. Kurlov, I.N. Dolganova. J. Biophotonics, 17 (11), e202400368 (2024). DOI: 10.1002/jbio.202400368
- K. Stock, T. Stegmayer, R. Graser, W. Forster, R. Hibst. Lasers Surg. Med., 44 (10), 815-823 (2012). DOI: 10.1002/lsm.22091
- I.N. Dolganova, I.A. Shikunova, A.K. Zotov, M.A. Shchedrina, I.V. Reshetov, K.I. Zaytsev, V.V. Tuchin, V.N. Kurlov. J. Biophotonics, 13 (10), e202000164 (2020). DOI: 10.1002/jbio.202000164
- M. Ahmad, M. Ismail. J. Cosmet. Dermatol., 20 (11), 3610-3615 (2021). DOI: 10.1111/jocd.14006
- T.J. Polletto, A.K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, N.M. Fried. Lasers Surg. Med., 38 (8), 787-791 (2006). DOI: 10.1002/lsm.20382
- A.V. Pushkarev, S.S. Ryabikin, D.I. Tsiganov, A.K. Zotov, V.N. Kurlov, I.N. Dolganova. J. Biomed. Photonics \& Eng., 8 (4), 040501 (2022). DOI: 10.18287/JBPE22.08.040501
- I.N. Dolganova, A.K. Zotov, L.P. Safonova, P.V. Aleksandrova, I.V. Reshetov, K.I. Zaytsev, V.V. Tuchin, V.N. Kurlov. J. Biophotonics, 16 (3), e202200288 (2023). DOI: 10.1002/jbio.202200288
- H.E. LaBelle. J. Cryst. Growth, 50 (1), 8-17 (1980). DOI: 10.1016/0022-0248(80)90226-2
- V.N. Kurlov, S.N. Rossolenko, N.V. Abrosimov, K. Lebbou. Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques (John Wiley and Sons, Capstone, 2010). DOI: 10.1002/9781444320237.ch5
- W.G. Zijlstra, A. Buursma, O.W. van Assendelft. Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin (Taylor and Francis Group, London, 2021). DOI: 10.1201/9780429071096
- A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin. J. Phys. D. Appl. Phys., 38 (15), 2543 (2005). DOI: 10.1088/0022-3727/38/15/004
- D.S. Myagkonosov, D.V. Abramov, I.N. Delitskaya, E.G. Ovchinnikova. Pisevye Sistemy/Food Systems, 5 (1), 47-54 (2022). DOI: 10.21323/2618-9771-2022-5-1-47-54
- B.M. Dunn. Chem. Rev., 102 (12), 4431-4458 (2002). DOI: 10.1021/cr010167q
- J. Motyan, F. Toth, J. Tozser. Biomolecules, 3 (4), 923-942 (2013). DOI: 10.3390/biom3040923
- A. Ishimaru. Appl. Opt., 28 (12), 2210-2215 (1989). DOI: 10.1364/ao.28.002210
- T.J. Farrell, M.S. Patterson, B. Wilson. Med. Phys., 19 (4), 879-888 (1992). DOI: 10.1118/1.596777
- H. Assadi, R. Karshafian, A. Douplik. Int. J. Photoenergy, 2014 (1), 471764 (2014). DOI: 10.1155/2014/471764
- N. Kollias, I.S. Seo, P.R. Bargo. J. Biophotonics, 3 (1-2), 15-24 (2010). DOI: 10.1002/jbio.200900066
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.