Manufacturing of sapphire capillaries for fiber-optic instruments in laser medical applications
Shikunova I. A. 1, Stryukov D. O. 1, Zubareva Ju. N.1, Dolganova I. N. 1, Shikunov S. L. 1, Kurlov V. N. 1
1Osipyan Institute of Solid State Physics RAS (ISSP RAS), Chernogolovka, Russia
Email: sh_irina@issp.ac.ru

PDF
Sapphire needle capillary irradiators have been developed for interstitial laser therapy and surgery on a base of thin crystalline tubes with a monolithic needle at the working end. The sapphire capillary protects located inside quartz fiber which deliver laser radiation (including high-power) from chemical and/or mechanical damage, and also transforms the axial beam coming out of the fiber into a diffuse distribution for irradiating of tumors of varying sizes and locations. In addition to the geometry of the external surfaces of the irradiator, the shape of the transition from the tubular part of the capillary to the monolithic one (through which the radiation from the quartz fiber enters the monolithic needle end) has an influence on the angular distribution of radiation in the beam. This paper explores how different factors of growth process affect the ability to control the geometry of the transition area - the shape of the channel's bottom. The parameters of the radiation beam emitted from the needle-tipped irradiator were assessed based on the geometry of the transition region. The analysis demonstrates that with a conical monolithic tip, for typical sphericity values of the channel bottom, a partially collimated or focused beam is generated, spreading from the needle tip into the tissue volume. It has been demonstrated that to enhance the resolution of devices utilizing sapphire components with enclosed capillary channels, precise micro-scale control of the geometry and surface quality of the irradiator is essential. Keywords: shaped sapphire, EFG /Stepanov technique, fiber-optic instruments, laser-induced thermo-therapy, photodynamic therapy, focusing.
  1. V.N. Kurlov. Encyclopedia of Materials: Science and Technology, ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings (Elsevier, 2001), p. 8259-8264. DOI: 10.1016/B0-08-043152-6/01478-9
  2. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik. Sapphire: Material, Manufacturing, Applications (Springer-Verlag, N.Y., 2009). DOI: 10.1007/978-0-387-85695-7
  3. V.A. Tatartchenko. Bulk Crystal Growth of Electronic, Optical \& Optoelectronic Materials, ed. by P. Copper, S. Kasap, A. Willoughby (Wiley, 2005), p. 299-238. DOI: 10.1002/9780470012086.ch10
  4. G. Katyba, K. Zaytsev, I. Dolganova, I. Shikunova, N. Chernomyrdin, S. Yurchenko, G. Komandin, I. Reshetov, V. Nesvizhevsky, V. Kurlov. Prog. Cryst. Growth Charact. Mater., 64 (4), 133-151 (2018). DOI: 10.1016/j.pcrysgrow.2018.10.002
  5. M.R. Hamblin, Y. Huang. Handbook of Photomedicine (CRC Press, Boca Raton, FL, 2013). DOI: 10.1201/b15582
  6. P. Greve. Applied laser medicine, ed. by H.P. Berlien, G.J. Muller (Springer, Berlin, 2003), p. 129-184. DOI: 10.1007/978-3-642-18979-1_4
  7. V. Knappe, A. Roggan, M. Glotz, M. Muller, J-P. Ritz, C-T. Germer, G. Mueller. Med. Laser Appl., 16 (2), 73-80 (2001). DOI: 10.1078/1615-1615-00013
  8. G.M. Katyba, K.I. Zaytsev, I.N. Dolganova, I.A. Shikunova, N.V. Chernomyrdin, S.O. Yurchenko, G.A. Komandin, I. V. Reshetov, V. V. Nesvizhevsky , V. N. Kurlov. Prog. Cryst. Growth Charact. Mater., 64 (4), 133-151 (2018). DOI: 10.1016/j.pcrysgrow.2018.10.002
  9. I.N. Dolganova, I.A. Shikunova, A.K. Zotov, M.A. Shchedrina, I.V. Reshetov, K.I. Zaytsev, V.V. Tuchin, V.N. Kurlov. J. Biophotonics, 13 (10), e202000164 (2020). DOI: 10.1002/jbio.202000164
  10. I.N. Dolganova, I.A. Shikunova, G.M. Katyba, A.K. Zotov, E.E. Mukhina, M.A. Shchedrina, V.V. Tuchin, K.I. Zaytsev, V.N. Kurlov. J. Biomed. Opt., 24 (12), 128001 (2019). DOI: 10.1117/1.JBO.24.12.128001
  11. I.N. Dolganova, D.A. Varvina, I.A. Shikunova, A.I. Alekseeva, P.A. Karalkin, M.R. Kuznetsov, P.V. Nikitin, A. K. Zotov, E.E. Mukhina, G.M. Katyba, K.I. Zaytsev, V.V. Tuchin, V.N. Kurlov. Laser. Surg. Med., 54 (4), 611-622 (2021). DOI: 10.1002/lsm.23509
  12. V.N. Kurlov, I.A. Shikunova, A.V. Ryabova, V.B. Loschenov. Bulletin of the Russian Academy of Sciences: Physics, 73 (10), 1341-1344 (2009). DOI: 10.3103/S1062873809100086
  13. I.A. Shikunova, D.O. Stryukov, S.N. Rossolenko, A.M. Kiselev, V.N. Kurlov. J. Cryst. Growth, 457, 265-269 (2017). DOI: 10.1016/j.jcrysgro.2016.08.062
  14. I.N. Dolganova, A.K. Zotov, S.N. Rossolenko, I.A. Shikunova, S.L. Shikunov, K.B. Dolganov, K.I. Zaytsev, V.N. Kurlov. Crystals, 14 (4), 346 (2024). DOI: 10.3390/cryst14040346
  15. I.A. Shikunova, I.N. Dolganova, A.A. Kuznetsov, E.E. Mukhina, L.P. Safonova, K.I. Zaytsev, V.N. Kurlov. Cryobiology, 92, 278-279 (2020). DOI: 10.1016/j.cryobiol.2019.11.032
  16. A.K. Zotov, A.V. Pushkarev, A.I. Alekseeva, K.I. Zaytsev, S.S. Ryabikin, D.I. Tsiganov, D.A. Zhidkov, I.A. Burkov, V.N. Kurlov, I.N. Dolganova. Sensors, 24 (11), 3655 (2024). DOI: 10.3390/s24113655
  17. I.N. Dolganova, A.K. Zotov, L.P. Safonova, I.V. Reshetov, K.I. Zaytsev, V.N. Kurlov. J. Biophotonics, 16 (3), e202200288 (2023). DOI: 10.1002/jbio.202200288
  18. G.M. Katyba, S.P. Lebedev, A.S. Kucheryavenko, I.N. Dolganova, N.V. Chernomyrdin, M.B. Burdanova, I.E. Spektor, M. Skorobogatiy, V.N. Kurlov, K.I. Zaytsev. Appl. Phys. Lett., 124, 243703 (2024). DOI: 10.1063/5.0207898
  19. A.S. Sharova, Yu.S. Maklygina, G.M. Yusubalieva, I.A. Shikunova, V.N. Kurlov, V.B. Loschenov. J. Physics: Conference Series, 945, 12009 (2018). DOI: 10.1088/1742-6596/945/1/012009
  20. H.E. LaBelle, A.I. Mlavsky. Mater. Res. Bull., 6 (7), 571-579 (1971). DOI: 10.1016/0025-5408(71)90006-7
  21. H.E. LaBelle. Mater. Res. Bull., 6 (7), 581-589 (1971). DOI: 10.1016/0025-5408(71)90007-9
  22. H.E. LaBelle. J. Cryst. Growth, 50 (1), 8-17 (1980). DOI: 10.1016/0022-0248(80)90226-2
  23. P.I. Antonov, V.N. Kurlov. Crystallography Reports, 47 (1), S43-S52 (2002). DOI: 10.1134/1.1529958
  24. A.V. Stepanov. Budushchee metalloobrabotki (Lenizdat, L., 1963), p. 130 (in Russian)
  25. V.N. Kurlov, S.N. Rossolenko. J. Cryst. Growth, 173, 417-426 (1997). DOI: 10.1016/S0022-0248(96)00836-6
  26. A. Shalabi, A. Ehab, S. F. Shalabi, G. Kugler, H.-J. Schafers, T. Graeter. Nat. Sci. Rep., 14, 5988 (2024). DOI: 10.1038/s41598-024-56566-5
  27. H. Fu, F. Luo, H. Zhao. J. Cosmet. Dermatol., 20 (9), 2805-2809 (2021). DOI: 10.1111/jocd.13994
  28. B. Spagnolo, A. Balena, R. T. Peixoto. Nat. Mater., 21, 826-835 (2022). DOI: 10.1038/s41563-022-01272-8
  29. V. Emiliani, E. Entcheva, R. Hedrich. Nat. Rev. Methods Primers, 2, 55 (2022). DOI: 10.1038/s43586-022-00136-4
  30. A. Tsakas, C. Tselios, D. Ampeliotis, C. Politi, D. Alexandropoulos. Results in Optics, 5, 100168 (2021). DOI: 10.1016/j.rio.2021.100168

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru