Influence of deformation on optical and optoelectronic properties of quasi-2D van der waals heterostructures based on borophene
Slepchenkov M. M.
1, Kolosov D. A.
1, Glukhova O. E.
1,21Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: slepchenkovm@mail.ru, demkol.93@mail.ru, glukhovaoe@info.sgu.ru
In this paper, ab initio methods are used to perform a predictive analysis of the effect of tensile/compressive strain on the optical and optoelectronic properties of van der Waals quasi-2D heterostructures formed by a buckled triangular borophene and graphene-like gallium nitride GaN and zinc oxide ZnO. The cases of strain leading to the appearance of an energy gap in the electronic structure of the studied van der Waals heterostructures are considered in detail: uniaxial compression by 14 % and biaxial compression by 4 % in the case of the borophene/GaN heterostructure and uniaxial tension by 10 % and biaxial compression by 6 % in the case of the borophene/ZnO heterostructure. It is shown that under uniaxial deformations, the absorption spectra of both heterostructures change most noticeably in the IR range, demonstrating an increase in the absorption coefficient by several times compared to its values in the absence of deformations. The borophene/GaN heterostructure is characterized by the highest absorption value in the IR range under uniaxial compression by 14 %. In the case of biaxial deformations, the borophene/GaN heterostructure is also characterized by an increase in the absorption coefficient in the IR range. For the borophene/ZnO heterostructure, in addition to an increase in absorption in the IR range, an increase in the absorption peak in the visible radiation range under biaxial compression by 6 % was found. It is shown that axial tensile/compressive deformation causes an increase in photocurrent generation in the studied heterostructures in the IR and visible radiation ranges due to an increase in their absorption coefficient in the specified wavelength ranges. Keywords: borophene heterostructures, axial tension/compression, density functional theory, absorption spectrum, photocurrent.
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science, 306 666 (2004). DOI: 10.1126/science.110289
- P. Ares, K.S. Novoselov. Nano Mater. Sci., 4, 3 (2021). DOI: 10.1016/j.nanoms.2021.05.002
- M. Corso, W. Auwarter, M. Muntwiler, A. Tamai, T. Greber, J. Osterwalder. Science, 303, 217 (2004). DOI: 10.1126/science.10919
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang. Nat. Nanotechnol., 9, 372 (2014). DOI: 10.1038/nnano.2014.35
- L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande. Nat. Nanotechnol., 10, 227 (2015). DOI: 10.1038/nnano.2014.325
- F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia. Nat Mater., 14, 1020 (2015). DOI: 10.1038/nmat4384
- M. Davila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay. New J. Phys., 16, 095002 (2014). DOI: 10.1088/1367-2630/16/9/095002
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis. Nat. Rev. Mater., 2, 17033 (2017). DOI: 10.1038/natrevmats.2017.33
- M.M. Uddin, M.H. Kabir, M.A. Ali, M.M. Hossain, M.U. Khandaker, S. Mandal, A. Arifutzzaman, D. Jana. RSC Adv., 13, 33336 (2023). DOI: 10.1039/d3ra04456d
- Y.V. Kaneti, D.P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi, D. Golberg. Chem. Rev., 122, 1000 (2021). DOI: 10.1021/acs.chemrev.1c00233
- C. Hou, G. Tai, Z. Wu, J. Hao. Chempluschem., 85, 2186 (2020). DOI: 10.1002/cplu.202000550
- K. Wang, S. Choyal, J.F. Schultz, J. McKenzie, L. Li, X. Liu, N. Jiang. Chempluschem., 89, e202400333 (2024). DOI: 10.1002/cplu.202400333
- P. Ranjan, J.M. Lee, P. Kumar, A. Vinu. Adv. Mater., 32, 2000531 (2020). DOI: 10.1002/adma.202000531
- G.H. Gupta, S. Kadakia, D. Agiwal, T. Kesharia, S. Kumar. Mater. Adv., 5, 1803 (2024). DOI: 10.1039/D3MA00829K
- P. Kumar, G. Singh, R. Bahadur, Z. Li, X. Zhang, C.I. Sathish, M.R. Benzigar, T.K.A. Tran, N.T. Padmanabhan, S. Radhakrishnan, J.C. Janardhanan, C.A. Biji, A.J. Mathews, H. John, E. Tavakko, A. Vinu. Prog. Mater. Sci., 146, 101331 (2024). DOI: 10.1016/j.pmatsci.2024.101331
- Z. Luo, X. Fan, Y. An. Nanoscale Res. Lett., 12, 514 (2017). DOI: 10.1186/s11671-017-2282-7
- X.B. Li, S.Y. Xie, H. Zheng, W.Q. Tian, H.B. Sun. Nanoscale, 7, 18863 (2015). DOI: 10.1039/c5nr04359j
- K.C. Lau, R. Pati, R. Pandey, A.C. Pineda. Chem. Phys. Lett., 418, 549 (2006). DOI: 10.1016/j.cplett.2005.10.104
- X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng. ACS Nano, 6, 7443 (2012). DOI: 10.1021/nn302696v
- D. Li, J. Gao, P. Cheng, J. He, Y. Yin, Y. Hu, L. Chen, Y. Cheng, J. Zhao. Adv. Funct. Mater., 30, 1904349 (2019). DOI: 10.1002/adfm.201904349
- A. Horri, R. Faez. Micro Nano Lett., 14, 992 (2019). DOI: 10.1049/mnl.2019.0023
- A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger. Science, 350, 1513 (2015). DOI: 10.1126/science.aad1080
- H. Sun, Q. Li, X.G. Wan. J. Am. Chem. Soc., 18, 14927 (2016). DOI: 10.1039/C6CP02029A
- R. Yanga, M. Sun. J. Mater. Chem. C, 11, 6834 (2023). DOI: 10.1039/D3TC00974B
- S. Wang, Q. Li, K. Hu, Q. Liu, X. Liu, X. Kong. Compos --- A: Appl. Sci. Manuf., 138, 106033 (2020). DOI: 10.1016/j.compositesa.2020.106033
- C. Hou, T. Ga, B. Liu, Z. Wu, Y. Yin. Nano Res., 14, 2337 (2021). DOI: 10.1007/s12274-020-3232-8
- J. Yu, M. Zhou, M. Yang, Y. Zhang, B. Xu, X. Li, H. Tao. Adv. Mater. Interfaces, 9, 2102088 (2022). DOI: 10.1002/admi.202102088
- J. Shen, Z. Yang, Y. Wang, L.C. Xu, R. Liu, X. Liu. Appl. Surf. Sci., 504, 144412 (2020). DOI: 10.1016/j.apsusc.2019.144412
- C. Hou, G. Tai, Y. Liu, Z. Wu, Z. Wua, X. Liang. J. Mater. Chem. A, 9, 13100 (2021). DOI: 10.1039/D1TA01940F
- J.W. Jiang, X.C. Wang, Y. Song, W.B. Mi. Appl. Surf. Sci., 440, 42 (2018). DOI: 10.1016/j.apsusc.2018.01.140
- N. Katoch, A. Kumar, R. Sharma, P.K. Ahluwalia, J. Kumar. Phys. E: Low-Dimens. Syst. Nanostructures, 120, 113842 (2020). DOI: 10.1016/j.physe.2019.113842
- S. Jing, W. Chen, J. Pan, W. Li, B. Bian, B. Liao, G. Wang. Mater. Sci. Semicond. Process., 146, 106673 (2022). DOI: 10.1016/j.mssp.2022.106673
- M.M. Slepchenkov, D.A. Kolosov, O.E. Glukhova. Materials, 15, 4084 (2022). DOI: 10.3390/ma15124084
- J.M. Soler, E. Artacho, J.D. Gale, A. Garci a, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys.: Condens. Matt., 14, 2745 (2002). DOI: 10.1088/0953-8984/14/11/302
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B, 46, 6671 (1992). DOI: 10.1103/PhysRevB.46.6671
- S. Grimme. J. Comput. Chem., 27, 1787 (2006). DOI: 10.1002/jcc.20495
- P. Pulay. Chem. Phys. Lett., 73, 393 (1980). DOI: 10.1016/0009-2614(80)80396-4
- H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
- E.N. Economou. Green's Functions in Quantum Physics, 3rd ed. (Springer, Berlin, 1983), pp. 55-75. DOI: 10.1007/3-540-28841-4_4
- M.M. Slepchenkov, D.A. Kolosov, O.E. Glukhova. Technical Physics, 69 (3), 397 (2024). DOI: 10.21883/0000000000
- M.M. Slepchenkov, D.A. Kolosov, O.E. Glukhova. Opt. Spectrosc., 131 (6), 712 (2023). DOI: 10.61011/EOS.2023.06.56658.115-23
- National Renewable Energy Laboratory (NREL) [electronic resource]. URL: https://www.nrel.gov/
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.