Influence of deformation on optical and optoelectronic properties of quasi-2D van der waals heterostructures based on borophene
Slepchenkov M. M. 1, Kolosov D. A. 1, Glukhova O. E. 1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: slepchenkovm@mail.ru, demkol.93@mail.ru, glukhovaoe@info.sgu.ru

PDF
In this paper, ab initio methods are used to perform a predictive analysis of the effect of tensile/compressive strain on the optical and optoelectronic properties of van der Waals quasi-2D heterostructures formed by a buckled triangular borophene and graphene-like gallium nitride GaN and zinc oxide ZnO. The cases of strain leading to the appearance of an energy gap in the electronic structure of the studied van der Waals heterostructures are considered in detail: uniaxial compression by 14 % and biaxial compression by 4 % in the case of the borophene/GaN heterostructure and uniaxial tension by 10 % and biaxial compression by 6 % in the case of the borophene/ZnO heterostructure. It is shown that under uniaxial deformations, the absorption spectra of both heterostructures change most noticeably in the IR range, demonstrating an increase in the absorption coefficient by several times compared to its values in the absence of deformations. The borophene/GaN heterostructure is characterized by the highest absorption value in the IR range under uniaxial compression by 14 %. In the case of biaxial deformations, the borophene/GaN heterostructure is also characterized by an increase in the absorption coefficient in the IR range. For the borophene/ZnO heterostructure, in addition to an increase in absorption in the IR range, an increase in the absorption peak in the visible radiation range under biaxial compression by 6 % was found. It is shown that axial tensile/compressive deformation causes an increase in photocurrent generation in the studied heterostructures in the IR and visible radiation ranges due to an increase in their absorption coefficient in the specified wavelength ranges. Keywords: borophene heterostructures, axial tension/compression, density functional theory, absorption spectrum, photocurrent.
  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science, 306 666 (2004). DOI: 10.1126/science.110289
  2. P. Ares, K.S. Novoselov. Nano Mater. Sci., 4, 3 (2021). DOI: 10.1016/j.nanoms.2021.05.002
  3. M. Corso, W. Auwarter, M. Muntwiler, A. Tamai, T. Greber, J. Osterwalder. Science, 303, 217 (2004). DOI: 10.1126/science.10919
  4. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang. Nat. Nanotechnol., 9, 372 (2014). DOI: 10.1038/nnano.2014.35
  5. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande. Nat. Nanotechnol., 10, 227 (2015). DOI: 10.1038/nnano.2014.325
  6. F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia. Nat Mater., 14, 1020 (2015). DOI: 10.1038/nmat4384
  7. M. Davila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay. New J. Phys., 16, 095002 (2014). DOI: 10.1088/1367-2630/16/9/095002
  8. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis. Nat. Rev. Mater., 2, 17033 (2017). DOI: 10.1038/natrevmats.2017.33
  9. M.M. Uddin, M.H. Kabir, M.A. Ali, M.M. Hossain, M.U. Khandaker, S. Mandal, A. Arifutzzaman, D. Jana. RSC Adv., 13, 33336 (2023). DOI: 10.1039/d3ra04456d
  10. Y.V. Kaneti, D.P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi, D. Golberg. Chem. Rev., 122, 1000 (2021). DOI: 10.1021/acs.chemrev.1c00233
  11. C. Hou, G. Tai, Z. Wu, J. Hao. Chempluschem., 85, 2186 (2020). DOI: 10.1002/cplu.202000550
  12. K. Wang, S. Choyal, J.F. Schultz, J. McKenzie, L. Li, X. Liu, N. Jiang. Chempluschem., 89, e202400333 (2024). DOI: 10.1002/cplu.202400333
  13. P. Ranjan, J.M. Lee, P. Kumar, A. Vinu. Adv. Mater., 32, 2000531 (2020). DOI: 10.1002/adma.202000531
  14. G.H. Gupta, S. Kadakia, D. Agiwal, T. Kesharia, S. Kumar. Mater. Adv., 5, 1803 (2024). DOI: 10.1039/D3MA00829K
  15. P. Kumar, G. Singh, R. Bahadur, Z. Li, X. Zhang, C.I. Sathish, M.R. Benzigar, T.K.A. Tran, N.T. Padmanabhan, S. Radhakrishnan, J.C. Janardhanan, C.A. Biji, A.J. Mathews, H. John, E. Tavakko, A. Vinu. Prog. Mater. Sci., 146, 101331 (2024). DOI: 10.1016/j.pmatsci.2024.101331
  16. Z. Luo, X. Fan, Y. An. Nanoscale Res. Lett., 12, 514 (2017). DOI: 10.1186/s11671-017-2282-7
  17. X.B. Li, S.Y. Xie, H. Zheng, W.Q. Tian, H.B. Sun. Nanoscale, 7, 18863 (2015). DOI: 10.1039/c5nr04359j
  18. K.C. Lau, R. Pati, R. Pandey, A.C. Pineda. Chem. Phys. Lett., 418, 549 (2006). DOI: 10.1016/j.cplett.2005.10.104
  19. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng. ACS Nano, 6, 7443 (2012). DOI: 10.1021/nn302696v
  20. D. Li, J. Gao, P. Cheng, J. He, Y. Yin, Y. Hu, L. Chen, Y. Cheng, J. Zhao. Adv. Funct. Mater., 30, 1904349 (2019). DOI: 10.1002/adfm.201904349
  21. A. Horri, R. Faez. Micro Nano Lett., 14, 992 (2019). DOI: 10.1049/mnl.2019.0023
  22. A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger. Science, 350, 1513 (2015). DOI: 10.1126/science.aad1080
  23. H. Sun, Q. Li, X.G. Wan. J. Am. Chem. Soc., 18, 14927 (2016). DOI: 10.1039/C6CP02029A
  24. R. Yanga, M. Sun. J. Mater. Chem. C, 11, 6834 (2023). DOI: 10.1039/D3TC00974B
  25. S. Wang, Q. Li, K. Hu, Q. Liu, X. Liu, X. Kong. Compos --- A: Appl. Sci. Manuf., 138, 106033 (2020). DOI: 10.1016/j.compositesa.2020.106033
  26. C. Hou, T. Ga, B. Liu, Z. Wu, Y. Yin. Nano Res., 14, 2337 (2021). DOI: 10.1007/s12274-020-3232-8
  27. J. Yu, M. Zhou, M. Yang, Y. Zhang, B. Xu, X. Li, H. Tao. Adv. Mater. Interfaces, 9, 2102088 (2022). DOI: 10.1002/admi.202102088
  28. J. Shen, Z. Yang, Y. Wang, L.C. Xu, R. Liu, X. Liu. Appl. Surf. Sci., 504, 144412 (2020). DOI: 10.1016/j.apsusc.2019.144412
  29. C. Hou, G. Tai, Y. Liu, Z. Wu, Z. Wua, X. Liang. J. Mater. Chem. A, 9, 13100 (2021). DOI: 10.1039/D1TA01940F
  30. J.W. Jiang, X.C. Wang, Y. Song, W.B. Mi. Appl. Surf. Sci., 440, 42 (2018). DOI: 10.1016/j.apsusc.2018.01.140
  31. N. Katoch, A. Kumar, R. Sharma, P.K. Ahluwalia, J. Kumar. Phys. E: Low-Dimens. Syst. Nanostructures, 120, 113842 (2020). DOI: 10.1016/j.physe.2019.113842
  32. S. Jing, W. Chen, J. Pan, W. Li, B. Bian, B. Liao, G. Wang. Mater. Sci. Semicond. Process., 146, 106673 (2022). DOI: 10.1016/j.mssp.2022.106673
  33. M.M. Slepchenkov, D.A. Kolosov, O.E. Glukhova. Materials, 15, 4084 (2022). DOI: 10.3390/ma15124084
  34. J.M. Soler, E. Artacho, J.D. Gale, A. Garci a, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys.: Condens. Matt., 14, 2745 (2002). DOI: 10.1088/0953-8984/14/11/302
  35. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B, 46, 6671 (1992). DOI: 10.1103/PhysRevB.46.6671
  36. S. Grimme. J. Comput. Chem., 27, 1787 (2006). DOI: 10.1002/jcc.20495
  37. P. Pulay. Chem. Phys. Lett., 73, 393 (1980). DOI: 10.1016/0009-2614(80)80396-4
  38. H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
  39. E.N. Economou. Green's Functions in Quantum Physics, 3rd ed. (Springer, Berlin, 1983), pp. 55-75. DOI: 10.1007/3-540-28841-4_4
  40. M.M. Slepchenkov, D.A. Kolosov, O.E. Glukhova. Technical Physics, 69 (3), 397 (2024). DOI: 10.21883/0000000000
  41. M.M. Slepchenkov, D.A. Kolosov, O.E. Glukhova. Opt. Spectrosc., 131 (6), 712 (2023). DOI: 10.61011/EOS.2023.06.56658.115-23
  42. National Renewable Energy Laboratory (NREL) [electronic resource]. URL: https://www.nrel.gov/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru