Malyshkina O.V.
1, Malysheva N.E.
2, Mamaev D.V.
11Tver State University, Tver, Russia
2Military Academy of Aero-Space Defence named after Marshal of the Soviet Union G.K. Zhukov, Tver, Russia
Email: Olga.Malyshkina@mail.ru, mne.70@mail.ru, yaamamoto@yandex.ru
Comparative studies of the experimental and calculated, based on a mathematical model, dielectric response of porous potassium sodium niobate (KNN) ceramics with a pore content of 10, 25 and 40 volume percent were carried out. Based on mathematical modeling, it is shown that in KNN samples without pores, the contribution to the dielectric response of relaxation conductivity is present only in the monoclinic phase (temperature range 200-400 oC). The presence of pores in KNN samples leads to the appearance of additional contributions of conduction processes to the dielectric response. In the experiments, this manifests itself as the appearance of additional (in comparison with a similar dependence for a sample without pores) linear segments on the dependence of the real part of the complex conductivity on the inverse temperature in Arrhenius coordinates. This indicates a set of activation energies and, as a consequence, the presence of various conductivity mechanisms in porous samples. Keywords: piezoelectric ceramics, porous ceramics, potassium sodium niobate, dispersion of complex permittivity, relaxation processes, resonance polarization.
- W. Wersing, K. Lubitz, J. Mohaupt. Ferroelectrics 68, 1, 77 (1986)
- A.N. Rybyanets, D.I. Makarev, N.A. Shvetsova. Ferroelectrics 539, 1, 101 (2019)
- J. Rodel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic. J. of the European Ceramic Society 35, 6, 1659 (2015)
- B. Malivc, A. Benvcan, T. Rojac, M. Kosec. Acta Chimica Slovenica. 55, 4, 719 (2008)
- J. Wu, D. Xiao, J. Zhu. Chemical Reviews 115, 7, 2559 (2015)
- O.V. Malyshkina, E.S. Tesnikova, N.E. Malysheva, A.I. Ivanova. Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov. 11, 198 (2019). (in Russian)
- A.N.Reznichenko, M.A. Lugovaya, E.I. Petrova, N.A. Shvetsova A.N. Rybyanets. Ferroelectrics 539, 1, 93 (2019)
- Y. Li, C. Wei, G. Lunlun, Ruifang Zhang, Xudong Cheng. High Temp. Mater. Processes. 35, 9, 955 (2016)
- J.G. Ayala-Landeros, V. Saucedo-Rivalcoba, S. Bribiesca-Vasquez, V.M. Castano, A.L. Marti nez-Hernandez, C. Velasco-Santos. Science of Sintering 48, 1, 29 (2016)
- S.E. Gass, M.L. Sandoval, M.H. Talou, A.G.T. Martinez, M.A. Camerucci, E. Gregorova, W. Pabst. Procedia Materials Science 9, 254. (2015)
- O.V. Malyshkina, E.V. Barabanova, N.E. Malysheva, A. Kapustkin, A.I. Ivanova. Ferroelectrics 561, 1, 114 (2020)
- D.V. Mamaev, O.V. Malyshkina, A.I. Ivanova. Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov. 16, 219 (2024). (in Russian)
- N.M. Galiyarova. V sb. Segnetoelektriki i piezoelektriki. Tver: Izd-vo TGU. 98 (1991). (in Russian)
- A.K. Jonscher. Universal relaxation law: a sequel to Dielectric relaxation in solids. Chelsea Dielectrics Press Limited, London. (1996). 415 p
- Yu.M. Poplavko. Fizika dielektrikov. Vishcha shkola. Golovnoe izd-vo, Kiev. (1980). 400 s. (in Russian)
- N.E. Malysheva, E.V. D'yakova, O.V. Malyshkina. Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov. 15, 481 (2023). (in Russian)
- O.V. Malyshkina, N.E. Malysheva, E.V. Dyakova, M. Ali. FTT 66, 8, 1384 (2024). (in Russian)
- B. Yaffe, W. Cook, G. Yaffe. Piezoelektricheskaya keramika. Mir, Moskva. (1974). 288 s. (in Russian)
- Galiyarova, N.M. Dielektricheskaya spektroskopiya segnetoelektrikov, fraktalnost i mekhanizmy dvizheniya domennykh i mezhfaznykh granits: Diss. dok. fiz. mat. nauk. Voronezh State University, 2006