Physics of the Solid State
Volumes and Issues
Structure and influence of pressure on low-temperature dielectric properties of nanocomposites based on mesoporous glasses containing K(1-x)(NH4)xH2PO4
Alekseeva O. A. 1, Bogdanov E.V. 2, Molokeev M.S. 2, Naberezhnov A.A. 1, Sysoeva A.A. 1
1Ioffe Institute, St. Petersburg, Russia
2Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: alekseeva.oa@mail.ioffe.ru, ebogdanov@sfu-kras.ru, msmolokeev@sfu-kras.ru, alex.nabereznov@mail.ioffe.ru, annasysoeva07@mail.ru

PDF
The results of a study of the structure and influence of pressure on the dielectric response of nanocomposite materials based on mesoporous glass with an average pore diameter of 7(2) nm containing solid solutions of (K(1-x)(NH4)xH2PO4 with x=0.05, 0.1 and 0.15) introduced into the pore space are presented. It is shown that in nanocomposites with x=0.1 and 0.15 tetragonal and monoclinic phases coexist. For the composition with x=0.05, the phase diagram TC(P) was obtained and the coefficient dTC/dP~-2.5(2) was determined. In nanocomposites with x=0.05 and 0.15 at P=0, an increase in the ferroelectric phase transition temperature TC is observed compared to similar bulk materials. Keywords: ammonium potassium dihydrogen phosphate, nanocomposite materials, X-ray diffraction, dielectric response.
  1. D.S. Bystrov, E.A. Popova. Ferroelectrics 72, 1, 147 (1987)
  2. M. Lines, A. Glass. Principles and Applications of Ferroelectrics and Related Materials. Oxford Univ. Press (1977). 680 p
  3. G.A. Smolensky, V.A. Bokov, V.A. Isupov, N.N. Kraynik, R.E. Pasynkov, M.S. Shur. Segnetoelektriki i antisegnetoelektriki. Nauka, L. (1971). 476 s. (in Russian)
  4. Y. Ono, T. Hikita, T. Ikeda. J. Phys. Soc. Jpn 56, 2, 577 (1987)
  5. S.A. Gridnev, L.N. Korotkov, S.P. Rogova, L.A. Shuvalov, R.M. Fedosjuk. Ferroelectr. Lett. Sect. 13, 3, 67 (1991)
  6. O.J. Kwon, J.-J. Kim. Phys. Rev. B 48, 9, 6639 (1993)
  7. R. Blinc, B. vZekvs. Soft Modes in Ferroelectrics and Antiferroelectrics. North-Holland Publishing Company (1974). 317 p
  8. T.N. Korotkova, L.N. Korotkov, L.A. Shuvalov, R.M. Fedosyuk. Crystallogr. Rep. 41, 3, 477 (1996)
  9. L.N. Korotkov, L.A. Shuvalov, R.M. Fedosyuk. Ferroelectrics 265, 1, 99 (2002)
  10. G.A. Samara. Phys. Rev. Lett. 27, 2, 103 (1971)
  11. E.V. Colla, A.V. Fokin, E.Yu. Koroleva, Yu.A. Kumzerov, S.B. Vakhrushev, B.N. Savenko. NanoStructured Mater. 12, 5-8, 963 (1999)
  12. V. Tarnavich, L. Korotkov, O. Karaeva, A. Naberezhnov, E. Rysiakiewicz-Pasek. Optica Applicata 40, 2, 305 (2010)
  13. T. Marciniszyn, R. Poprawski, J. Komar, A. Sieradzki. Phase Transitions 83, 10-11, 909 (2010)
  14. A. Cizman, T. Marciniszyn, E. Rysiakiewicz-Pasek, A. Sieradzki, T.V. Antropova, R. Poprawski. Phase Transitions 86, 9, 910 (2012)
  15. E. Koroleva, A. Naberezhnov, A. Sysoeva, P. Vanina, V. Nizhankovskii. Tech. Phys. Lett. 41, 10, 981 (2015)
  16. P.Yu. Vanina, A.A. Naberezhnov, O.A. Alekseeva, A.A. Sysoeva, D.P. Danilovich, V.I. Nizhankovskii. Nanosystems: Phys., Chem., Math. 8, 4, 535 (2017)
  17. P.Yu. Vanina, A.A. Naberezhnov, A.A. Sysoeva, V.I. Nizhankovskii, B. Nacke. Nanosystems: Phys., Chem., Math. 8, 6, 835 (2017)
  18. V.V. Tarnavich, A.S. Sidorkin, T.N. Korotkova, E. Rysiakiewicz-Pasek, L.N. Korotkov, N.G. Popravko. Crystals 9, 11, 593 (2019)
  19. O.A. Alekseeva, M.O. Enikeeva, A.A. Naberezhnov, A.A. Sysoeva. Tech. Phys. Lett. 50, 6, 5 (2024)
  20. N.I. Uskova, D.Yu. Podorozhkin, E.V. Charnaya, S.V. Baryshnikov, A.Yu. Milinskiy, D.Yu. Nefedov, A.S. Bugaev, M.K. Lee, L.J. Chang. Ferroelectrics 514, 1, 50 (2017)
  21. Y.A. Kumzerov, N.F. Kartenko, L.S. Parfen'eva, I.A. Smirnov, A.V. Fokin, D. Wlosewicz, H. Misiorek, A. Jezowski. Phys. Solid State 53, 5, 1099 (2011)
  22. A.Yu. Milinskiy, S.V. Baryshnikov, E.V. Charnaya. Ferroelectrics 501, 1, 109 (2016)
  23. A.A. Blistanov, V.S. Bondarenko, N.V. Perelomova, F.N. Strizhevskaya, V.V. Chkalova, M.P. Shaskolskaya. Akusticheskie kristally. Nauka, M. (1982). 632 p. (in Russian)
  24. Precision in Glass \& Optics for over 25 Years, VYCORoledR 7913 High-temperature glass with 96 % SiO2 content, https:/www.pgo-online.com/intl/vycor.html (Accessed: 20 August 2024)
  25. M.E. Nordberg. J. Am. Ceram. Soc. 27, 10, 299 (1944)
  26. O.V. Mazurin, E.A. Porai-Koshits. Phase Separation in Glass. North-Holland, Amsterdam (1984). 369 p
  27. B.-K. Choi, J.-J. Kim. Phys. Rev. B 28, 3, 1623 (1983)
  28. FullProf suite. https://www.ill.eu/sites/fullprof/ (2024). (Accessed 4 August 2024)
  29. T. Fukami, R.-H. Chen. J. Phys. Soc. Jpn 75, 7, 074602 (2006)
  30. O.A. Alekseeva, A.A. Nabereznov, G.-I. Ekosse. Tech. Phys. 67, 9, 1265 (2022)
  31. B. Dorner, I. Golosovsky, Yu. Kumzerov, D. Kurdyukov, A. Naberezhnov, A. Sotnikov, S. Vakhrushev. Ferroelectrics 286, 1, 213 (2003)
  32. R. Nelmes. Physica Status Solidi B 52, 2, K89 (1972)
  33. N.I. Porechnaya. Strukturnye osobennosti i svoistva dvukhfaznykh zhelezosoderzhashchikh kompositnykh matrits na ikh osnove. Kand. diss.k.f.-m.n. SPbGPY, S.-Peterburg (2013). p. 123. (in Russian).
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru