Physics of the Solid State
Volumes and Issues
Photoluminescence related to dislocations in silicon plastically deformed under bending mode of central symmetry
Emtsev V. V.1, Sobolev N. A.1, Oganesyan G .A.1, Kalyadin A. E.1, Toporov V. V.1, Poloskin D. S.1, Malyarenko A. M.1
1Ioffe Institute, St. Petersburg, Russia
Email: emtsev@mail.ioffe.ru

PDF
The photoluminescence related to dislocation formation in silicon wafers subjected to the bending mode of central symmetry by a circular male die, which has never been used for this purpose before, is investigated. An original technique whose efficiency was very recently demonstrated in the bending experiments on silicon wafers allows one to simultaneously determine the mechanical stress on the stretched and compressed sides of a wafer by the shift of the 520.5 cm-1 band in the Raman spectra. Plastic deformation of the wafer under mechanical loading is carried out at T=700 oC for one hour. It is shown that all four known dislocation luminescence bands (lines D1-D4) and extended structural defects 113 appear on the stretched side of the wafer outside the central part. On the compressed side of the wafer outside the central part, lines D3 and D4 are clearly visible, as well as the edge luminescence line, but lines D1 and D2 are absent. When approaching the center of the wafer the D3 and D4 lines prevail on the stretched and compressed sides with residual deformation, and the D4 line dominates in the very center. In this way, some prominent changes in the dislocation luminescence of plastically deformed silicon wafers under tensile and compressive stresses produced by the bending mode of central symmetry are evident. Keywords: silicon, bending mode of central symmetry, plastic deformation, photoluminescence.
  1. N. Margalit, C. Xiang, S.M. Bowers, A. Bjorlin, R. Blum, J.E. Bowers. Appl. Phys. Lett. 118, 220501 (2021). https://doi.org/10.1063/5.0050117
  2. N.A. Sobolev, A.E. Kalyadin, O.V. Feklisova, E.B. Yakimov. Semiconductors 55, 633 (2021). https://doi.org/10.1134/S1063782621070174
  3. N.A. Drozdov, A.A. Patrin, V.D. Tkachev. JETP Lett. 23, 597 (1976)
  4. M. Reiche, M. Kittler. Crystals 6 (7), 74 (2016). https://doi.org/10.3390/cryst6070074
  5. E.A. Steinman. Physics of the Solid State 47, 5 (2005). https://doi.org/10.1134/1.1853432
  6. N.A. Sobolev, A.E. Kalyadin, K.F. Shtel'makh, P.N. Aruev, V.V. Zabrodskiy, E.I. Shek. Semiconductors 57, 283 (2023). DOI: 10.61011/SC.2023.04.56427.4810
  7. E.A. Steinman, V.V. Kveder, V.I. Vdovin, H.G. Grimmeiss. Solid State Phenomena 69-70, 23 (1999). https://doi.org/10.4028/www.scientific.net/SSP.69-70.23
  8. S. Pizzini, M. Guzzi, E. Grilli, G. Borionetti. Journal of Physics: Condensed Matter 12, 10131 (2000). https://doi.org/10.1088/0953-8984/12/49/312
  9. A.E. Kalyadin, K.F. Shtel'makh, P.N. Aruev, V.V. Zabrodski, K.V. Karabeshkin, E.I. Shek, N.A. Sobolev. Semiconductors 54, 687 (2020). https://doi.org/10.1134/S1063782620060081
  10. S. Takeda. Jpn. J. Appl. Phys. 30, L639 (1991). https://doi.org/10.1143/JJAP.30.L639
  11. L.I. Fedina, A.K. Gutakovskii, A.V. Latyshev, A.L. Aseev. In: Advances in Semiconductor Nanostructures, Growth, Characterization, Properties and Applications, ed by A. Latyshev, A. Dvurechenskii, A. Aseev (Elsevier, Amsterdam, 2016) p. 383
  12. L. Jeyanathan, E.C. Lightowlers, V. Higgs, G. Davies. Mater. Sci. Forum 143-147, 1499 (1994). https://doi.org/10.4028/www.scientific.net/MSF.143-147.1499
  13. S. Binetti, S. Pizzini, E. Leoni, R. Somaschini, A. Castaldini, A. Cavallini. J. Appl. Phys. 92, 2437 (2002). https://doi.org/10.1063/1.1497450
  14. K. Bothe, R.J. Falster, J.D. Murphy. Appl. Phys. Lett. 101, 032107 (2012). https://doi.org/10.1063/1.4737175
  15. S. Binetti, R. Somaschini, A. LeDonne, E. Leoni, S. Pizzini, D. Li, D. Yang. J. Phys.: Condens. Matter 14, 13247 (2002). https://doi.org/10.1088/0953-8984/14/48/375
  16. N.A. Sobolev, A.E. Kalyadin, K.F. Shtel'makh, E.I. Shek, V.I. Sakharov, I.T. Serenkov. Semiconductors 56, 390 (2022). DOI: 10.21883/SC.2022.06.53535.9832
  17. A. Borghesi, B. Pivac, A. Sassella, A. Stella. J. Appl. Phys. 77, 4169 (1995). https://doi.org/10.1063/1.359479
  18. V.I. Vdovin, L.I. Fedina, A.K. Gutakovskii, A.E. Kalyadin, E.I. Shek, K.F. Shtel'makh, N.A. Sobolev. Crystallography Reports 66, 625 (2021). DOI: 10.1134/s1063774521040210
  19. G.A. Oganesyan, I.I. Novak. Journal of Surface Investigation, X-ray, Synchrotron and Neutron Techniques 3, 962 (2009). https://doi.org/10.1134/S1027451009060202
  20. I.I. Novak, V.V. Baptizmanskii, L.V. Zhoga. Opt. Spectrosc. 43, 145 (1977)
  21. I.I. Novak, G.A. Oganesyan. Journal of Surface Investigation, X-ray, Synchrotron and Neutron Techniques 1, 294 (2007). https://doi.org/10.1134/S1027451007030111
  22. V.V. Emtsev, V.V. Toporov, G.A. Oganesyan, A.A. Lebedev, D.S. Poloskin. Physica B: Condensed Matter 684, 415949 (2024). https://doi.org/10.1016/j.physb.2024.415949
  23. E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, M. Cardona. Solid State Communications 8, 133 (1970). https://doi.org/10.1016/0038-1098(70)90588-0
  24. I.D. Wolf. Semicond. Sci. Technol. 11, 139 (1990). https://doi.org/10.1088/0268-1242/11/2/001
  25. V. Poborchii, T. Tada, T. Kanayama. Appl. Phys. Lett. 97, 041915 (2010). https://doi.org/10.1063/1.3474604
  26. A. Gassenq, S. Tardif, K. Guilloy, I. Duchemin, N. Pauc, J.M. Hartmann, D. Rouchon, J. Widiez, Y.M. Niquet, L. Milord, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, F. Rieutord, V. Reboud, V. Calvo. J. Appl. Phys. 121, 055702 (2017). https://doi.org/10.1063/1.4974202
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru