Mathematical model of calculating the minimum stimulation current based on neural response telemetry data in cochlear implantation systems
Melnikov N.S.1, Malyar L.V.2, Kostevich I.V.2, Kozlov A.G.3
1Dostoevsky Omsk State University, Omsk, Russia
2North-Western District Scientific and Clinical Centre named after L.G. Sokolov Federal and Biological Agency, St. Petersburg, Russia
3Omsk State Technical University, Omsk, Russia
Email: niklas89@list.ru, malyar-larisa@rambler.ru, igor-doc.ne@mail.ru, agk252@mail.ru
The aim of the research is to develop the alternative model based on the experimental data in the course of the cochlear implantation, to calculate the minimum stimulation current that generates an electrically evoked action potential of auditory nerve in cochlear implantation systems. The experimental data (the current and action potential) were received from 69 patients. The core of the mathematical model is power function approximation as well as construction of tangents to the midpoint, introduction of correction factors. Due to the additional algorithm, during the implant testing the minimum "visual" current which was used as the true one when estimating the model application proposed by the authors was determined. Additionally, the minimum current within the linear approximation model was calculated. Statistical data processing was conducted in MS Excel, Spearman's rank correlation method for correlation assessment was used. The alternative model may be used in case of computer-assisted algorithm malfunction for various reasons both in intra- and postoperative period. Keywords: cochlear implantation, distortion of signals, approximation, extrapolation, correlation.
- R.P. Carlyon, T. Goehring. JARO, 22, 481 (2021). DOI: 10.1007/s10162-021-00811-5
- A. Dhanasing, I. Hochmair. Acta Oto-Laringologica, 141, 1 (2021). DOI: 10.1080/00016489.2021.1888193
- I. Boisvert, M. Reis, A. Au, R. Cowan, R.C. Dowell. PLoS ONE, 15 (5), 1 (2020). DOI: 10.1371/journal.pone.0232421
- World Health Organization. World report on hearing (Geneva, Switzerland, 2021), ISBN 978-92-4-002157-0 (electronic version)
- I.T. Brill, T. Stark, L. Wigers, S.M. Brill. Health and quality of life outcomes, 21, Art. Num. 37 (2023). DOI: 10.1186/s12955-023-02118-w
- G.A. Tavartkiladze. Klinicheskaya audiologia (GEOTAR-Media, M., 2024), v. 3
- M. Bayri, A. Chiprut. Auris Nasus Larynx, 47 (6), 950 (2020). DOI: 10.1016/j.anl.2020.05.025
- T. Liebscher, J. Hornung, U. Hoppe. In: Sec. Sensory Neuroscience ed. by C. Richard (Frontiers in Human Neuroscience, 2023), DOI: 10.3389/fnhum.2023.1125747
- Custom Sound Pro software version 6.3. Cochlear implant reference guide (Cochlear Limited, Sydney, 2020)
- S. He, X. Chao, R. Wang, J. Luo, L. Xu, H. Teagle, L. Park, K. Brown, M. Shannon, C. Warner, A. Pellittieri, W. Riggs. Ear Hear, 41 (3), 465 (2020). DOI: 10.1097/AUD.0000000000000782
- E.R. Spitzer, M.L. Hughes. J. American Academy of Audiology, 28 (9), 786 (2017). DOI: 10.3766/jaaa.16144 12kjA. Mueller, M.H. Kropp, P. Mir-Salim, A. Aristotelis. Zeitschrift fur Medizinische Physik, 31 (3), 276 (2021). DOI: 10.1016/j.zemedi.2020.07.002
- Custom Sound EP software version 6.0. User guide. Cochlear implant reference guide (Cochlear Limited, Sydney, 2020)
- L. Mens. Trends in Amplification, 11 (3), 143 (2007). DOI: 10.1177/1084713807304362
- A. Botros, B. Dijk, M. Killian. Artificial Intelligence Medicine, 40 (1), 15 (2007). DOI: 10.1016/j.artmed.2006.06.003