Numerical and experimental study of laser initiated microwave discharge trace temperature
Renev M. E. 1, Dobrov Yu. V. 1, Lashkov V. A. 1, Osipov N. D.1, Mashek I. Ch. 1, Khoronzhuk R. S. 1
1St. Petersburg State University, St. Petersburg, Russia
Email: renevme@mail.ru, youdobrov@gmail.com, valerial180150@gmail.com, nikitaosipov2211@gmail.com, igor.mashek@gmail.com, khoronzhuk@gmail.com

PDF
A numerical and experimental study of the trace temperature of a microwave discharge initiated by a laser in air is carried out. The amplitude of the microwave field strength is 2.0 kV/cm, discharge is ignited at pressures up to 6.66 kPa; the duration of the microwave radiation pulse is 2.5 μs. The use of 10 ns laser pulses with an energy of 200 mJ and a wavelength of 532 nm makes it possible to obtain an initiated subcritical microwave discharge at a pressure of 10.6 kPa. The dependences of the discharge trace temperature on time with initiation up to 200 μs and a pressure of 5.33-10.0 kPa are given. The trace of the discharge is hot, the temperature is about 1000 K, which corresponds to the trace of a filament discharge. The numerical model confirms the possibility of obtaining a filament subcritical microwave discharge at low pressures of about 10 kPa in a few μs due to laser initiation. The model is based on those known in the literature and is modified with explicit consideration of photoeffects during the solution. The consistency of the results of trace temperature calculations and interferometry, taking into account the uncertainty of 25 %, is achieved in the first 20 μs after switching off the microwave radiation. Keywords: Heating, plasma, hydrodynamic model, Fabry-Perot interferometer, laser initiation, microwave radiation.
  1. D.L. Kuznetsov, V.V. Uvarin, I.E. Filatov. J. Phys. D: Appl. Phys., 54 (43), 435203 (2021). DOI: 10.1088/1361-6463/ac17b2
  2. L. He, U. Zhang, H. Zeng, B. Zhao. Chinese J. Aeronautics, 36 (12), 53 (2023). DOI: 10.1016/j.cja.2023.04.029
  3. S. Starikovskaia, D.A. Lacoste, G. Colonna. Europ. Phys. J. D, 75 (8), 231 (2021). DOI: 10.1140/epjd/s10053-021-00240-2
  4. A.Y. Starikovskiy, N.L. Aleksandrov. Plasma Phys. Reports, 47 (2), 148 (2021). DOI: 10.1134/S1063780X21020069
  5. O.A. Azarova, O.V. Kravchenko. Energies, 17 (7), 1632 (2024). DOI: 10.3390/en17071632
  6. Yu.P. Rajzer. Fizika gazovogo razryada (Intellekt, Dolgoprudny, 2009), p. 736. (in Russian)
  7. J.P. Boeuf, B. Chaudhury, G.Q. Zhu. Phys. Rev. Lett., 104 (1), 015002 (2010) DOI: 10.1103/PhysRevLett.104.015002
  8. A. I. Sayfutdinov Candidate's Dissertation in Mathematics and Physics (Kazan, Kazan Aviation Institute (2023)
  9. V. Gildenburg, A. Kim. Fizika Plazmy, 6 (4), 904 (1980) (in Russian)
  10. A.L. Vikharev, A.M. Gorbachev, A.V. Kim, A.L. Kolysko. Plasma Physi. Fusion Technol., 18 (8), 554 (1992)
  11. V.A. Bityurin, V.G. Brovkin, P.V. Vedenin. Tech. Phys. Lett., 41 (3), 217 (2015). DOI: 10.1134/S1063785015030037
  12. V. A. Bityurin, V. G. Brovkin, P. V. Vedenin. Tech. Phys., 60 (2), 222 (2015). DOI: 10.1134/S1063784215020036
  13. V.G. Brovkin, P.V. Vedenin. J. Appl. Phys, 128 (11), 113301 (2020). DOI: 10.1063/5.0016249
  14. A.I. Sayfutdinov, E.V. Kustova, A.G. Karpenko, V.A. Lashkov. Fizika Plazmy, 45 (6), 568 (2019) (in Russian). DOI: 10.1134/S036729211905010X
  15. Q. Shen, R. Huang, Z. Xu, H. Wei. Appl. Sci., 10 (15), 5393 (2020). DOI: 10.3390/app10155393
  16. Y. Yang, W. Hua, S.Y. Guo. Phys. Plasmas, 21 (4), 040702 (2014). DOI: 10.1063/1.4872000
  17. N.A. Popov. Plasma Sources Sci. Technol., 25 (4), 044003 (2016). DOI: 10.1088/0963-0252/25/4/044003
  18. N.A. Popov, S.M. Starikovskaia. Progr. Energy and Combustion Sci., 91, 100928 (2022). DOI: 10.1016/j.pecs.2021.100928
  19. Y. Zhu, S. Starikovskaia. Plasma Sources Sci. Technol., 27 (12), 124007 (2018). DOI: 10.1088/1361-6595/aaf40d
  20. A.I. Bechina, E.V. Kustova. Vestnik St.Petersb. Univ. Math., 52 (1), 81 (2019). DOI: 10.3103/S1063454119010035
  21. A.I. Saifutdinov, E.V. Kustova. J. Appl. Phys., 129 (2), 023301 (2021). DOI: 10.1063/5.0031020
  22. N.A. Popov. J. Phys. D: Appl. Phys., 44 (28), 285201 (2011). DOI: 10.1088/0022-3727/44/28/285201
  23. V.S. Popov. UFN, 174 (9), 921 (2004) (in Russian). DOI: 10.3367/UFNr.0174.200409a.0921
  24. V.Yu. Fedorov, V.P. Candidov. Opt. i spektr., 105 (2), 306 (2008) (in Russian)
  25. Y. Kolesnichenko, V. Brovkin, D. Khmara, I. Mashek, V. Lashkov, M. Rivkin. 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics (2006), DOI: 10.2514/6.2006-792
  26. R.S. Khoronzhuk, A.G. Karpenko, V.A. Lashkov, D.P. Potapenko, I.Ch. Mashek. J. Plasma Phys., 81 (3), 905810307 (2015). DOI: 10.1017/S0022377814001299
  27. J.B. Michael, A. Dogariu, M.N. Shneider, R.B. Miles. J. Appl. Phys., 108 (9), 093308 (2010). DOI: 10.1063/1.3506401
  28. S.D. McGuire, M.N. Shneider. Plasma Phys., (2024). DOI: 10.48550/arXiv.2411.18963
  29. Yu.V. Dobrov, V.A. Lashkov, I.Ch. Mashek, A.M. Prokshin, M.E. Renev, R.S. Khoronzhuk. J. Eng. Phys. Thermophy., 97 (4), 1068 (2024)
  30. C.J. Peters, M.N. Shneider, R.B. Miles. J. Appl. Phys., 125 (24), 243301 (2019). DOI: 10.1063/1.5098306
  31. M.J. DeWitt, R.J. Levis. J. Chem. Phys., 108 (18), 7739 (1998). DOI: 10.1063/1.476208
  32. A. Talebpour, J. Yang, S.L. Chin. Opt. Commun., 163 (1-3), 29 (1999). DOI: 10.1016/S0030-4018(99)00113-3
  33. J. Kasparian, R. Sauerbrey, S.L. Chin. Appl. Phys. B, 71 (6), 877 (2000). DOI: 10.1007/s003400000463
  34. L.C. Lee, G.P. Smith. J. Chem. Phys., 70 (4), 1727 (1979). DOI: 10.1063/1.437690
  35. Biagi database, www.lxcat.net, retrieved on October 28, 2021
  36. IST-Lisbon database, www.lxcat.net, retrieved on October 28, 2021
  37. Itikawa database, www.lxcat.net, retrieved on October 28, 2021
  38. TRINITI database, www.lxcat.net, retrieved on October 12, 2021
  39. Morgan database, www.lxcat.net, retrieved on October 28, 2021
  40. BSR database, www.lxcat.net, retrieved on September 29, 2022
  41. C. Lazarou, A.S. Chiper, C. Anastassiou, I. Topala, I. Mihaila, V. Pohoata, G.E. Georghiou. J. Phys. D: Appl. Phys., 52 (19), 195203 (2019). DOI: 10.1088/1361-6463/ab06cd
  42. F.J. Mehr, M.A. Biondi. Phys. Rev., 181 (1), 264 (1969). DOI: 10.1103/PhysRev.181.264
  43. C. Park, J.T. Howe, R.L. Jaffe, G. Candler. J. Thermophys. Heat Transfer, 8 (1), 9 (1994). DOI: 10.2514/3.496
  44. NIST Chemistry WebBook [Electronic resource] URL: https://webbook.nist.gov/chemistry/
  45. O. Schenk, K. Grtner. Future Generation Computer Systems, 20 (3), 475 (2004). DOI: 10.1016/j.future.2003.07.011
  46. G.I. Aseev. Ispol'zovanie interferometra Makha-Tsendera dlya opredeleniya prostranstvennogo raspredeleniya pokazatelya prelomleniya i temperatury v plameni training guide (Phys.fac.) SarGU, Saratov, 2005) p. 30 (in Russian).
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru