Temperature dependence of luminescence of terbium complexes with different substituents in N-heterocyclic ligands
Shmelkov K. D.1, Kharcheva A. V. 1, Borisova N. E. 1, Ivanov A. V.1, Patsaeva S. V. 1
1Lomonosov Moscow State University, Moscow, Russia
Email: vinchester3030@mail.ru, harcheva.anastasiya@physics.msu.ru, borisova.nataliya@gmail.com, phthaliv@gmail.com, spatsaeva@mail.ru

PDF
The temperature dependence of the spectral luminescent characteristics of four terbium complexes with 2,2'-bipyridyldicarboxanilides, containing different substituents in phenyl ring, has been studied. The measurements were carried out in the temperature range from 302 to 329 K. The dependences of the luminescence quantum yield and integral intensity on temperature were obtained for the studied compounds. Asymmetry ratios were calculated. It was found that the quantum yield and integral luminescence intensity of the complexes decrease with increasing temperature, and the coefficients of temperature sensitivity of these characteristics were calculated. The maximum relative temperature sensitivity of the integral luminescence intensity was observed for the complex with a ligand without a substituent, it was (9.0±1.0)%/K at a temperature of 309 K. Some of the studied complexes can potentially be used as optical thermometers Keywords: luminescence, terbium, REE complexes, temperature sensitivity, organic ligands, optical thermometer.
  1. S.V. Eliseeva, J.-C.G. Bunzli. Chem. Soc. Rev., 39 (1), 189-227 (2010). DOI: 10.1039/b905604c
  2. C. Viravaux, O. Oms, A. Dolbecq, E. Nassar, L. Busson, C. Mellot-Draznieks, R. Dessapt, H. Serier-Brault, P. Mialane. J. Mater. Chem. C, 9 (26), 8323-8328 (2021). DOI: 10.1039/d1tc01532j
  3. X. Wang, K. Batra, G. Clavier, G. Maurin, B. Ding, A. Tissot, Christian Serre. Chemistry A European J., 29 (12), 13978-14007 (2023). DOI: 10.1002/chem.202203136
  4. X. Pei, Y. Pan, L. Zhang, Y. Lv. Appl. Spectrosc. Rev., 56 (4), 1-22 (2020). DOI: 10.1080/05704928.2020.1793770
  5. H. Guan, Mi. Qi, L. Shi, W. Liu, L. Yang, W. Dou. ACS Appl. Materials \& Interfaces, 15 (14), 18114-18124 (2023). DOI: 10.1021/acsami.3c01897
  6. N. Sun, Z. Xijin, Y. Yang, L. Li, A. Zhang, H. Jia, X. Liu. J. Rare Earths, 34 (2), 130-136 (2016). DOI: 10.1016/s1002-0721(16)60004-2
  7. A.A. Bozhko, A.V. Kharcheva, N.E. Borisova, A.V. Ivanov, S.V. Patsaeva. Opt. Spectrosc., 131 (6), 690-698 (2023). DOI: 10.61011/EOS.2023.06.56655.107-23
  8. A.V. Kharcheva, K.D. Shmelkov, Yu.G. Sokolovskaya, A.V. Ivanov, N.E. Borisova, S.V. Patsaeva. Moscow University Physics Bulletin, 79 (4), 477-484 (2024). DOI: 10.3103/S0027134924700620
  9. L.Yu. Mironov, S.K. Evstropiev. Opt. Eng., 58 (2), 027113 (2019). DOI: 10.1117/1.OE.58.2.027113
  10. J. Yu, L. Sun, H. Peng, M.I.J. Stich. J. Materials Chemistry, 20 (33), 6975 (2010). DOI: 10.1039/c0jm01069c
  11. D.S. Koshelev, A.V. Medved'ko, A.S. Goloveshkin, Y.V. Nelubina, O.A. Maloshitskaya, E.S. Safiullina, Y.A. Gracheva, E.A. Nikitin, L.S. Lepnev, S.Z. Vatsadze, V.V. Utochnikova. J. Materials Chemistry C., 12 (48), 19352-19358 (2024). DOI: 10.1039/d4tc03970j
  12. J. Georges. The Analyst, 118 (12), 1481 (1993). DOI: 10.1039/an9931801481
  13. B. Alpha, R. Ballardini, V. Balzani, J.-M. Lehn, S. Perathoner, N. Sabbatini. Photochem. and Photobiol., 52 (2), 299-306 (1990). DOI: 10.1111/j.1751-1097.1990.tb04185.x
  14. N.E. Borisova, A.V. Kharcheva, S.V. Patsaeva, L.A. Korotkov, S. Bakaev, M.D. Reshetova, K.A. Lyssenko, E.V. Belova, B.F. Myasoedov. Dalton Transactions, 46 (7), 2238-2248 (2017). DOI: 10.1039/C6DT04681A
  15. F. Gutierrez, C. Tedeschi, L. Maron, J.-P. Daudey, R. Poteau, J. Azema, P. Tisnes, C. Picard. Dalton Trans., 9 (9), 1334-1347 (2004). DOI: 10.1039/b316246j
  16. R.E. Whan, G.A. Crosby. J. Molec. Spectrosc., 8 (1-6), 315-327 (1962). DOI: 10.1016/0022-2852(62)90031-0
  17. G.A. Crosby, R.E. Whan, R.M. Alire. J. Chem. Phys., 34 (3), 743-748 (1961). DOI: 10.1063/1.1731670
  18. N.E. Borisova, A.V. Ivanov, A.V. Kharcheva, T.B. Sumyanova, U.V. Surkova, P.I. Matveev, S.V. Patsaeva. Molecules, 25 (1), 62 (2020). DOI: 10.3390/molecules25010062
  19. A. Arauzo, L. Gasque, S. Fuertes, C. Tenorio, S. Bernes, E. Bartolome. Dalton Transactions, 49 (39), 13671-13684 (2020). DOI: 10.1039/d0dt02614j
  20. M. Xiao, P.R. Selvin. J. Am. Chem. Society, 123 (29), 7067-7073 (2001). DOI: 10.1021/ja0031669
  21. B.-L. Chen, Y.-M. Sun, H. Xiang, M.-X. Lin, J.-H. Lia, Y.-L. Huang. New J. Chem., 46 (23), 11021-11024 (2022). DOI: 10.1039/D2NJ01250B
  22. Z. Zhao, M. Bian, C. Lin, X. Fu, G. Yu, H. Wei, Z. Liu, Z. Bian, C. Huang. Sci. China Chem., 64 (9), 1504-1509 (2021). DOI: 10.1007/s11426-021-1036-0
  23. J.R. Lakowicz. Principles of Fluorescence Spectroscopy, 2nd ed. (PlenuID Publishers, N.Y., 1999). DOI: 10.1007/978-1-4757-3061-6
  24. Y.-H. Wang, J. Zhou, R.-L. Zong, S.-K. Shi, T. Wang, B. Li. Optoelectron. Lett., 2 (4), 316-319 (2006). DOI:10.1007/BF03033670
  25. N.E. Borisova, T. Sumyanova, A.V. Kharcheva, P.I. Matveev, A.V. Ivanov, E.A. Razumova, S.V. Patsaeva. Dalton Transactions, 47 (46), 16755-16765 (2018). DOI: 10.1039/C8DT03734E
  26. F.S. Richardson. Chem. Rev., 82 (5), 541-552 (1982). DOI: 10.1021/cr00051a004
  27. S. Sivakumar, M.L.P. Reddy. J. Materials Chemistry, 22 (21), 10852 (2012). DOI: 10.1039/c2jm30535f
  28. A.V. Kharcheva, A.A. Bozhko, Y.G. Sokolovskaya, N.E. Borisova, A.V. Ivanov, S.V. Patsaeva. Photonics, 10 (10), 1-13 (2023). DOI: 10.3390/photonics10101171
  29. L.O. Tcelykh, V.Yu. Kozhevnikova, A.S. Goloveshkin, E.V. Latipov, E.O. Gordeeva, V.V. Utochnikova. Sensors and Actuators A: Physica, 345 (50), 113787 (2022). DOI: 10.1016/j.sna.2022.113787
  30. L.B. Guimaraes, A. Botas, M.C.F.C. Felinto, R. Ferreira, L.A.D. Carlos, O.L. Malta, H.F. Brito. Materials Advances, 1 (6), 1988-1995 (2020). DOI: 10.1039/d0ma00201a
  31. T. Xia, Z. Shao, X. Yan, M. Liu, L. Yu, Y. Wan, B. Chang, J. Zhang, D. Zhao. Chem. Commun., 57 (25), 3143-3146 (2021). DOI: 10.1039/d1cc00297j
  32. A.A. Ivanova, T.A. Polikovskiy, V.E. Gontcharenko, V.M. Korshunov, M.A. Kiskin, I.V. Taydakov, Y.A. Belousov. Sensors and Actuators A: Physica, 379, 115969 (2024). DOI: 10.1016/j.sna.2024.115969
  33. I.E. Kolesnikov, A.V. Povolotskiy, D.V. Mamonova, E.Y. Kolesnikov, A.V. Kurochkin, E. Lahderanta, M.D. Mikhailov. J. Rare Earths, 36 (5), 474-481 (2018). DOI: 10.1016/j.jre.2017.11.008
  34. K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, A. Opalinska, J.D. Fidelus, W. Lojkowski. Opt. Materials, 32 (8), 827-831 (2010). DOI: 10.1016/j.optmat.2010.03.002
  35. K. Burek, S. Eidner, S. Kuke, M.U. Kumke. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 191, 36-49 (2018). DOI: 10.1016/j.saa.2017.09.012

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru