Effect of Internal Charging on Cathodoluminescence Profiling Capability: Boron-Implanted β-Ga2O3
Tatarintsev A.A.
1,2, Ieshkin A. E.
1, Zykova E.Yu.
1, Orlikovskaya N. G.
1, Kiselevskiy V.A.
2,31Lomonosov Moscow State University, Moscow, Russia
2National Research Center “Kurchatov Institute”, Moscow, Russia
3V.G. Mokerov Institute of Ultra-High Frequency Semiconductor Electronics of the Russian Academy of Sciences, Moscow, Russia
Email: tatarintsev@physics.msu.ru, ieshkin@physics.msu.ru, zykova@rambler.ru, orlikovskayang@gmail.com
The effect of sample electrification by an electron beam on the integral intensity of cathodoluminescence and on the shape of the emission spectrum is investigated in the work. For this purpose, using the example of Fe :β-Ga2O3 implanted with boron, the results of cathodoluminescence measurements are compared for three series of experiments: when the surface of the sample under study was not grounded, grounded, or covered with a conductive grounded film. The studies have shown that even when using a metal film, the accumulation of charge under it can distort the shape of the spectrum. Such a distortion of the spectra during a cathodoluminescence study with depth resolution will lead to an incorrect determination of the defect concentration profiles. Comparison of the spectra sequentially recorded with an increase in the electron beam energy and then with a decrease in energy can be proposed as a quick criterion for assessing the effect of charging on the quality of luminescent center profiling. Keywords: gallium oxide, cathodoluminescence, internal charging, boron implantation, defect profiling.
- M.D. McCluskey. J. Appl. Phys., 127, 101101 (2020). DOI: 10.1063/1.5142195
- A.I. Titov, K. V. Karabeshkin, A.I. Struchkov, V.I. Nikolaev, A. Azarov, D.S. Gogova, P.A. Karaseov. Vacuum, 200, 111005 (2022). DOI: 10.1016/j.vacuum.2022.111005
- A Nikolskaya, E. Okulich, D. Korolev, A. Stepanov, D. Nikolichev, A. Mikhaylov, D. Tetelbaum, A. Almaev, C.A. Bolzan, A. Buaczik, R. Giulian, P.L. Grande, A. Kumar, M. Kumar, D. Gogova. J. Vac. Sci. Technol. A, 39, 030802 (2021). DOI: 10.1116/6.0000928
- M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki, T. Hitora. Appl. Phys. Express, 9, 021101 (2016). DOI: 10.7567/APEX.9.021101
- S.J. Pearton, F. Ren, M. Tadjer, J. Kim. J. Appl. Phys., 124, 220901 (2018). DOI: 10.1063/1.5062841
- V. Nikolaev, A.Y. Polyakov, V. Krymov, S. Shapenkov, P. Butenko, E. Yakimov, A. Vasilev, I. Shchemerov, A. Chernykh, N. Matros, L. Alexanyan, A. Kochkova, S.J. Pearton. ECS J. Solid State Sci. Technol., 13, 015003 (2024). DOI: 10.1149/2162-8777/ad1bda
- A.Y. Polyakov, N.B. Smirnov, I. V. Shchemerov, S.J. Pearton, F. Ren, A. V. Chernykh, P.B. Lagov, T. V. Kulevoy. APL Mater., 6, 096102 (2018). DOI: 10.1063/1.5042646
- R. Sharma, M.E. Law, C. Fares, M. Tadjer, F. Ren, A. Kuramata, S.J. Pearton. AIP Adv., 9, 085111 (2019). DOI: 10.1063/1.5115149
- R. Sharma, M.E. Law, M. Xian, M. Tadjer, E.A. Anber, D. Foley, A.C. Lang, J.L. Hart, J. Nathaniel, M.L. Taheri, F. Ren, S.J. Pearton, A. Kuramata. J. Vac. Sci. Technol. B, 37, 051204 (2019). DOI: 10.1116/1.5118001
- R. Sugie, T. Uchida, A. Hashimoto, S. Akahori, K. Matsumura, Y. Tanii. Appl. Phys. Express, 13(12), 126502 (2020). DOI: 10.35848/1882-0786/abca7c
- L. Williams, E. Kioupakis. Appl. Phys. Lett., 111, 211107 (2017). DOI: 10.1063/1.4997601
- A.A. Nikolskaya, D.S. Korolev, V.N. Trushin, M.N. Drozdov, P.A. Yunin, E.A. Pitirimova, A. V. Kudrin, E. V. Okulich, V.I. Okulich, A.N. Mikhaylov, D.I. Tetelbaum. Nucl. Instr. Meth. Phys. Res. B, 537, 65 (2023). DOI: 10.1016/j.nimb.2023.01.014
- X. Zeng, V. Pelenovich, A. Ieshkin, A. Danilov, A. Tolstogouzov, W. Zuo, J. Ranjana, D. Hu, N. Devi, D. Fu, X. Xiao. Rapid Commun. Mass Spectrom., 33 (18), 1449 (2019). DOI: 10.1002/rcm.8489
- A.Y. Polyakov, N.B. Smirnov, I. V. Shchemerov, S.J. Pearton, F. Ren, A. V. Chernykh, A.I. Kochkova. Appl. Phys. Lett., 113, 142102 (2018). DOI: 10.1063/1.5051986
- H. Gao, S. Muralidharan, N. Pronin, M.R. Karim, S.M. White, T. Asel, G. Foster, S. Krishnamoorthy, S. Rajan, L.R. Cao, M. Higashiwaki, H. Von Wenckstern, M. Grundmann, H. Zhao, D.C. Look, L.J. Brillson. Appl. Phys. Lett., 112 (24), 242102 (2018). DOI: 10.1063/1.5026770
- J. Lee, E. Flitsiyan, L. Chernyak, S. Ahn, F. Ren, L. Yuna, S.J. Pearton, J. Kim, B. Meyler, J. Salzman. ECS J. Solid State Sci. Technol., 6(2), Q3049 (2017). DOI: 10.1149/2.0101702jss
- S. Rafique, L. Han, H. Zhao. Phys. St. Sol. Appl. Mater. Sci., 214(8), 1700063 (2017). DOI: 10.1002/pssa.201700063
- P. Ravadgar, R.-H. Horng, S.-D. Yao, H.-Y. Lee, B.-R. Wu, S.-L. Ou, L.-W. Tu. Opt. Express, 21(21), 24599 (2013). DOI: 10.1364/oe.21.024599
- R. Renoud, F. Papin, J. P. Ganachaud, J. Bigarre. Phys. St. Sol. Appl. Mater. Sci., 203(3), 591 (2006). DOI: 10.1002/pssa.200521482
- V.I. Petrov. UFN, 166(8), 859 (1996) (in Russian). DOI: 10.3367/UFNr.0166.199608c.0859 [V.I. Petrov. Phys. Usp., 39, 807 (1996). DOI: 10.1070/PU1996v039n08ABEH000162]
- F. Alema, B. Hertog, O. Ledyaev, D. Volovik, G. Thoma, R. Miller, A. Osinsky, P. Mukhopadhyay, S. Bakhshi, H. Ali, W. V. Schoenfeld. Phys. St. Sol., 214(5), 1600688 (2017). DOI: 10.1002/pssa.201600688
- A.A. Tatarintsev, E.Yu. Zykova, A.E. Ieshkin, N.G. Orlikovskaya, E.I. Rau. FTT, 65(8), 1288 (2023) (in Russian). DOI: 10.61011/EOS.2025.03.61155.139-24 [A.A. Tatarintsev, E.Y. Zykova, A.E. Ieshkin, N.G. Orlikovskaya, E.I. Rau. Physics of the Solid State, 65(8), 1236 (2023). DOI: 10.61011/EOS.2025.03.61155.139-24]
- E.Y. Zykova, A.E. Ieshkin, N.G. Orlikovskaya, A.A. Tatarintsev, V.V. Khvostov, Y.V. Balakshin. Radiat. Phys. Chem., 217, 111481 (2024). DOI: 10.1016/j.radphyschem.2023.111481
- A. Axelevitch, B. Gorenstein, G. Golan. Phys. Procedia, 32, 1 (2012). DOI: 10.1016/j.phpro.2012.03.510
- H.J. Fitting. J. Electron Spectros. Relat. Phenomena, 136(3), 265 (2004). DOI: 10.1016/j.elspec.2004.04.003
- Y. Wang, P.D. Townsend. J. Lumin., 142, 202 (2013). DOI: 10.1016/j.jlumin.2013.03.052
- M.R. Phillips. Microchim. Acta, 155, 51 (2006). DOI: 10.1007/s00604-006-0506-0
- H.G. Orlikovskaya, E.Y. Zykova, A.A. Tatarintsev. Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 9, 50 (2024) (in Russian)
- Y. Wang, P.T. Dickens, J.B. Varley, X. Ni, E. Lotubai, S. Sprawls, F. Liu, V. Lordi, S. Krishnamoorthy, S. Blair, K.G. Lynn, M. Scarpulla, B. Sensale-Rodriguez. Sci. Rep., 8, 18075 (2018). DOI: 10.1038/s41598-018-36676-7
- A.Y. Polyakov, N.B. Smirnov, I. V. Shchemerov, E.B. Yakimov, V.I. Nikolaev, S.I. Stepanov, A.I. Pechnikov, A. V. Chernykh, K.D. Shcherbachev, A.S. Shikoh, A. Kochkova, A.A. Vasilev, S.J. Pearton. APL Mater., 7, 051103 (2019). DOI: 10.1063/1.5094787
- A.Y. Polyakov, I.H. Lee, N.B. Smirnov, E.B. Yakimov, I.V. Shchemerov, A. V. Chernykh, A.I. Kochkova, A.A. Vasilev, P.H. Carey, F. Ren, D.J. Smith, S.J. Pearton. APL Mater., 7, 061102 (2019). DOI: 10.1063/1.5109025
- Y. Nie, S. Jiao, S. Li, H. Lu, S. Liu, S. Yang, D. Wang, S. Gao, J. Wang, Y. Li. J. Alloys Compd., 900, 163431 (2022). DOI: 10.1016/j.jallcom.2021.163431
- H.H. Tippins. Phys. Rev., 137, 3A (1965). DOI: 10.1103/PhysRev.137.A865
- L. Binet, D. Gourier. J. Phys. Chem. Solids, 59(8), 1241 (1998). DOI: 10.1016/S0022-3697(98)00047-X
- T.T. Huynh, L.L. C. Lem, A. Kuramata, M.R. Phillips, C. Ton-That. Phys. Rev. Mater., 2(10), 105203 (2018). DOI: 10.1103/PhysRevMaterials.2.105203
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.