Effect of Internal Charging on Cathodoluminescence Profiling Capability: Boron-Implanted β-Ga2O3
Tatarintsev A.A. 1,2, Ieshkin A. E. 1, Zykova E.Yu. 1, Orlikovskaya N. G.1, Kiselevskiy V.A.2,3
1Lomonosov Moscow State University, Moscow, Russia
2National Research Center “Kurchatov Institute”, Moscow, Russia
3V.G. Mokerov Institute of Ultra-High Frequency Semiconductor Electronics of the Russian Academy of Sciences, Moscow, Russia
Email: tatarintsev@physics.msu.ru, ieshkin@physics.msu.ru, zykova@rambler.ru, orlikovskayang@gmail.com

PDF
The effect of sample electrification by an electron beam on the integral intensity of cathodoluminescence and on the shape of the emission spectrum is investigated in the work. For this purpose, using the example of Fe :β-Ga2O3 implanted with boron, the results of cathodoluminescence measurements are compared for three series of experiments: when the surface of the sample under study was not grounded, grounded, or covered with a conductive grounded film. The studies have shown that even when using a metal film, the accumulation of charge under it can distort the shape of the spectrum. Such a distortion of the spectra during a cathodoluminescence study with depth resolution will lead to an incorrect determination of the defect concentration profiles. Comparison of the spectra sequentially recorded with an increase in the electron beam energy and then with a decrease in energy can be proposed as a quick criterion for assessing the effect of charging on the quality of luminescent center profiling. Keywords: gallium oxide, cathodoluminescence, internal charging, boron implantation, defect profiling.
  1. M.D. McCluskey. J. Appl. Phys., 127, 101101 (2020). DOI: 10.1063/1.5142195
  2. A.I. Titov, K. V. Karabeshkin, A.I. Struchkov, V.I. Nikolaev, A. Azarov, D.S. Gogova, P.A. Karaseov. Vacuum, 200, 111005 (2022). DOI: 10.1016/j.vacuum.2022.111005
  3. A Nikolskaya, E. Okulich, D. Korolev, A. Stepanov, D. Nikolichev, A. Mikhaylov, D. Tetelbaum, A. Almaev, C.A. Bolzan, A. Buaczik, R. Giulian, P.L. Grande, A. Kumar, M. Kumar, D. Gogova. J. Vac. Sci. Technol. A, 39, 030802 (2021). DOI: 10.1116/6.0000928
  4. M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki, T. Hitora. Appl. Phys. Express, 9, 021101 (2016). DOI: 10.7567/APEX.9.021101
  5. S.J. Pearton, F. Ren, M. Tadjer, J. Kim. J. Appl. Phys., 124, 220901 (2018). DOI: 10.1063/1.5062841
  6. V. Nikolaev, A.Y. Polyakov, V. Krymov, S. Shapenkov, P. Butenko, E. Yakimov, A. Vasilev, I. Shchemerov, A. Chernykh, N. Matros, L. Alexanyan, A. Kochkova, S.J. Pearton. ECS J. Solid State Sci. Technol., 13, 015003 (2024). DOI: 10.1149/2162-8777/ad1bda
  7. A.Y. Polyakov, N.B. Smirnov, I. V. Shchemerov, S.J. Pearton, F. Ren, A. V. Chernykh, P.B. Lagov, T. V. Kulevoy. APL Mater., 6, 096102 (2018). DOI: 10.1063/1.5042646
  8. R. Sharma, M.E. Law, C. Fares, M. Tadjer, F. Ren, A. Kuramata, S.J. Pearton. AIP Adv., 9, 085111 (2019). DOI: 10.1063/1.5115149
  9. R. Sharma, M.E. Law, M. Xian, M. Tadjer, E.A. Anber, D. Foley, A.C. Lang, J.L. Hart, J. Nathaniel, M.L. Taheri, F. Ren, S.J. Pearton, A. Kuramata. J. Vac. Sci. Technol. B, 37, 051204 (2019). DOI: 10.1116/1.5118001
  10. R. Sugie, T. Uchida, A. Hashimoto, S. Akahori, K. Matsumura, Y. Tanii. Appl. Phys. Express, 13(12), 126502 (2020). DOI: 10.35848/1882-0786/abca7c
  11. L. Williams, E. Kioupakis. Appl. Phys. Lett., 111, 211107 (2017). DOI: 10.1063/1.4997601
  12. A.A. Nikolskaya, D.S. Korolev, V.N. Trushin, M.N. Drozdov, P.A. Yunin, E.A. Pitirimova, A. V. Kudrin, E. V. Okulich, V.I. Okulich, A.N. Mikhaylov, D.I. Tetelbaum. Nucl. Instr. Meth. Phys. Res. B, 537, 65 (2023). DOI: 10.1016/j.nimb.2023.01.014
  13. X. Zeng, V. Pelenovich, A. Ieshkin, A. Danilov, A. Tolstogouzov, W. Zuo, J. Ranjana, D. Hu, N. Devi, D. Fu, X. Xiao. Rapid Commun. Mass Spectrom., 33 (18), 1449 (2019). DOI: 10.1002/rcm.8489
  14. A.Y. Polyakov, N.B. Smirnov, I. V. Shchemerov, S.J. Pearton, F. Ren, A. V. Chernykh, A.I. Kochkova. Appl. Phys. Lett., 113, 142102 (2018). DOI: 10.1063/1.5051986
  15. H. Gao, S. Muralidharan, N. Pronin, M.R. Karim, S.M. White, T. Asel, G. Foster, S. Krishnamoorthy, S. Rajan, L.R. Cao, M. Higashiwaki, H. Von Wenckstern, M. Grundmann, H. Zhao, D.C. Look, L.J. Brillson. Appl. Phys. Lett., 112 (24), 242102 (2018). DOI: 10.1063/1.5026770
  16. J. Lee, E. Flitsiyan, L. Chernyak, S. Ahn, F. Ren, L. Yuna, S.J. Pearton, J. Kim, B. Meyler, J. Salzman. ECS J. Solid State Sci. Technol., 6(2), Q3049 (2017). DOI: 10.1149/2.0101702jss
  17. S. Rafique, L. Han, H. Zhao. Phys. St. Sol. Appl. Mater. Sci., 214(8), 1700063 (2017). DOI: 10.1002/pssa.201700063
  18. P. Ravadgar, R.-H. Horng, S.-D. Yao, H.-Y. Lee, B.-R. Wu, S.-L. Ou, L.-W. Tu. Opt. Express, 21(21), 24599 (2013). DOI: 10.1364/oe.21.024599
  19. R. Renoud, F. Papin, J. P. Ganachaud, J. Bigarre. Phys. St. Sol. Appl. Mater. Sci., 203(3), 591 (2006). DOI: 10.1002/pssa.200521482
  20. V.I. Petrov. UFN, 166(8), 859 (1996) (in Russian). DOI: 10.3367/UFNr.0166.199608c.0859 [V.I. Petrov. Phys. Usp., 39, 807 (1996). DOI: 10.1070/PU1996v039n08ABEH000162]
  21. F. Alema, B. Hertog, O. Ledyaev, D. Volovik, G. Thoma, R. Miller, A. Osinsky, P. Mukhopadhyay, S. Bakhshi, H. Ali, W. V. Schoenfeld. Phys. St. Sol., 214(5), 1600688 (2017). DOI: 10.1002/pssa.201600688
  22. A.A. Tatarintsev, E.Yu. Zykova, A.E. Ieshkin, N.G. Orlikovskaya, E.I. Rau. FTT, 65(8), 1288 (2023) (in Russian). DOI: 10.61011/EOS.2025.03.61155.139-24 [A.A. Tatarintsev, E.Y. Zykova, A.E. Ieshkin, N.G. Orlikovskaya, E.I. Rau. Physics of the Solid State, 65(8), 1236 (2023). DOI: 10.61011/EOS.2025.03.61155.139-24]
  23. E.Y. Zykova, A.E. Ieshkin, N.G. Orlikovskaya, A.A. Tatarintsev, V.V. Khvostov, Y.V. Balakshin. Radiat. Phys. Chem., 217, 111481 (2024). DOI: 10.1016/j.radphyschem.2023.111481
  24. A. Axelevitch, B. Gorenstein, G. Golan. Phys. Procedia, 32, 1 (2012). DOI: 10.1016/j.phpro.2012.03.510
  25. H.J. Fitting. J. Electron Spectros. Relat. Phenomena, 136(3), 265 (2004). DOI: 10.1016/j.elspec.2004.04.003
  26. Y. Wang, P.D. Townsend. J. Lumin., 142, 202 (2013). DOI: 10.1016/j.jlumin.2013.03.052
  27. M.R. Phillips. Microchim. Acta, 155, 51 (2006). DOI: 10.1007/s00604-006-0506-0
  28. H.G. Orlikovskaya, E.Y. Zykova, A.A. Tatarintsev. Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 9, 50 (2024) (in Russian)
  29. Y. Wang, P.T. Dickens, J.B. Varley, X. Ni, E. Lotubai, S. Sprawls, F. Liu, V. Lordi, S. Krishnamoorthy, S. Blair, K.G. Lynn, M. Scarpulla, B. Sensale-Rodriguez. Sci. Rep., 8, 18075 (2018). DOI: 10.1038/s41598-018-36676-7
  30. A.Y. Polyakov, N.B. Smirnov, I. V. Shchemerov, E.B. Yakimov, V.I. Nikolaev, S.I. Stepanov, A.I. Pechnikov, A. V. Chernykh, K.D. Shcherbachev, A.S. Shikoh, A. Kochkova, A.A. Vasilev, S.J. Pearton. APL Mater., 7, 051103 (2019). DOI: 10.1063/1.5094787
  31. A.Y. Polyakov, I.H. Lee, N.B. Smirnov, E.B. Yakimov, I.V. Shchemerov, A. V. Chernykh, A.I. Kochkova, A.A. Vasilev, P.H. Carey, F. Ren, D.J. Smith, S.J. Pearton. APL Mater., 7, 061102 (2019). DOI: 10.1063/1.5109025
  32. Y. Nie, S. Jiao, S. Li, H. Lu, S. Liu, S. Yang, D. Wang, S. Gao, J. Wang, Y. Li. J. Alloys Compd., 900, 163431 (2022). DOI: 10.1016/j.jallcom.2021.163431
  33. H.H. Tippins. Phys. Rev., 137, 3A (1965). DOI: 10.1103/PhysRev.137.A865
  34. L. Binet, D. Gourier. J. Phys. Chem. Solids, 59(8), 1241 (1998). DOI: 10.1016/S0022-3697(98)00047-X
  35. T.T. Huynh, L.L. C. Lem, A. Kuramata, M.R. Phillips, C. Ton-That. Phys. Rev. Mater., 2(10), 105203 (2018). DOI: 10.1103/PhysRevMaterials.2.105203

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru