Chunaev D. S.1, Kravtsov S. B.1, Shukshin V. E.1, Shlegel V. N.2, Grigorieva V. D.2, Zverev P. G.1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: zverev@lst.gpi.ru
Two-photon absorption and stimulated Raman scattering in Na2Mo2O7 crystal were studied when irradiated with picosecond laser pulses with a duration of 25 ps. The anisotropy of nonlinear optical properties and width of a band gap in the crystal is revealed. The maximum two-photon absorption coefficient at a wavelength of 523.5 nm was 7.8 cm/GW for radiation with a polarization parallel to the crystallographic axis a. Stimulated Raman scattering in Na2Mo2O7 crystal with a Stokes shift of 939 cm-1 when pumped with a wavelength of 523.5 nm was obtained only when excited by radiation with a polarization parallel to the crystallographic axes b and c with Raman gain up to 10.3 cm/GW. The absence of stimulated Raman scattering when excited by radiation with a polarization parallel to axis a, which corresponds to maximal Raman gain coefficient, is due the competition of processes of the stimulated Raman scattering and the two-photon absorption Keywords: Sodium dimolybdate, two-photon absorption, band gap, stimulated raman scattering.
- T.T. Basiev, R.C. Powell. Solid-state Raman lasers. In: Handbook of Laser Technology and Applications (CRC Press, 2021), p. 127-149. DOI: 10.1201/9781003127130
- H. Zhao, S. Dai, S. Zhu, H. Yin, Z. Li, Z. Chen. Crystals, 11, 114 (2021). DOI: 10.3390/cryst11020114
- P. Cerny, H. Jelinkova, P.G. Zverev, T.T. Basiev. Progr. Quant. Electron., 28, 113 (2004). DOI: 10.1016/j.pquantelec.2003.09.003
- M. Rumi, J.W. Perry. Adv. Opt. Photon., 2, 451 (2010). DOI: 10.1364/AOP.2.000451
- D.N. Christodoulides, I.C. Khoo, G.J. Salamo, G.I. Stegeman, E.W. Van Stryland. Adv. Opt. Photon., 2, 60 (2010). DOI: 10.1364/AOP.2.000060
- P. Jiang, X. Ding, J. Guo, H. Zhang, H. Qi, Y. Shang, Z. Song, W. Wang, C. Wang, G. Liu, C. Yao. Opt. Laser Tech., 169, 110072, (2024). DOI:
- I.O. Kinyaevskiy, V.I. Kovalev, A.V. Koribut, E.E. Dunaeva, N.S. Semin, A.A. Ionin. Opt. Spectrosc., 131 (2), 196 (2023). DOI: 10.61011/EOS.2023.02.55785.8-23
- R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Marti nez-Garci a, A. Segura. Europhys. Lett., 83, 37002 (2008). DOI: 10.1209/0295-5075/83/37002
- V.I. Lukanin, D.S. Chunaev, A.Y. Karasik. J. Exp. Theor. Phys., 113, 412 (2011). DOI: 10.1134/S1063776111070077
- V.D. Grigorieva, V.N. Shlegel, N.V. Ivannikova, T.B. Bekker, A.P. Yelisseyev, A.B. Kuznetsov. J. Crystal Growth, 507, 31 (2019). DOI 10.1016/j.jcrysgro.2018.10.058
- D.S. Chunaev, S.B. Kravtsov, V.E. Shukshin, V.N. Shlegel, V.D. Grigorieva, P.G. Zverev. Bulletin of the Lebedev Physics Institute, 51, 11, S919--S927 (2024). DOI: 10.3103/S1068335624602796
- D.A. Spassky, N.S. Kozlova, M.G. Brik, V. Nagirnyi, S. Omelkov, O.A. Buzanov, M. Buryi, V. Laguta, V.N. Shlegel, N.V. Ivannikova. J. Lumin., 192, 1264 (2017). DOI: 10.1016/j.jlumin.2017.09.006
- A. Dragomir, J.G. McInerney, D.N. Nikogosyan. Appl. Opt. 41 (21), 4365 (2002). DOI: 10.1364/AO.41.004365
- V.I. Lukanin, A.Y. Karasik. Opt. Spectrosc., 121 503 (2016). DOI: 10.1134/S0030400X16100143
- Y. Gao, C. Zhang, L. Ma, H. Li, S. Chen. Phys. Stat. Sol. B, 259 (8), 2200036 (2022). DOI: 10.1002/pssb.202200036
- T.T. Basiev, P.G. Zverev, A.Y. Karasik, V.V. Osiko, A.A. Sobol', D.S. Chunaev. J. Exp. Theor. Phys., 99, 934 (2004). DOI: 10.1134/1.1842874
- I.V. Mochalov. Opt. Engineer., 36, 1660 (1997). DOI: 10.1117/1.601185
- V.I. Lukanin, A.Y. Karasik. Opt. Commun., 336, 207 (2015). DOI: 10.1016/j.optcom.2014.10.012
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.