Study of mechanical characteristics of layered structures based on carbon nanomaterials for creation of bioelectronic components
Murashko D.T.1, Kurilova U.E.1,2, Popovich K.D.1,2, Kuksin A.V.1, Gerasimenko A.Yu.1,2
1Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russian Federation
2Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
Email: skorden@outlook.com
The paper presents the technology of formation of layered structures based on carbon nanomaterials intended for the creation of bioelectronic components. The structures were formed by spray deposition and ordering of layers of single-walled carbon nanotubes and reduced graphene oxide. Vertically ordered complex tree-like structures of single-walled carbon nanotubes and reduced graphene oxide were formed using laser radiation of nanosecond ytterbium fiber laser with a wavelength of 1064 nm and energy density of 0.12 J/cm2. It is shown that the hardness values of the samples of SWCNTs, rGO and hybrid compounds of SWCNTs and rGO increased in the range of 1.5-2 times and amounted to 38.56±4.91 GPa, 34.34±1.56 GPa and 37.05±8.30 GPa, respectively. Also, when exposed to laser radiation with energy density of 0.12 J/cm2, the values of elastic modulus of CNT, rGO and hybrid compounds of CNT and rGO samples increased by 1.2-1.5 times and amounted to 233.12±18.70 GPa, 235.89±3.85 GPa and 281.69±3.74 GPa, respectively. Also, when exposed to laser radiation with energy density of 0.12 J/cm2, the values of elastic modulus of the samples of SWNTs, rGO and hybrid compounds of SWNTs and rGO increased by 1.2-1.5 times and amounted to 233.12±18.70 GPa, 235.89±3.85 GPa and 281.69±3.74 GPa, respectively. The adhesion of samples of CNT-based layered structures and the hybrid composition of CNTs and rGOs was determined. By evaluating the scratches, it was obtained that the samples ordered by laser irradiation of 0.12 J/cm2 are able to withstand loads up to 40 mN. The formed ordered layered structures based on carbon nanomaterials are promising for application as bioelectronic components, for example, neural interfaces for diagnostics or therapy, implanted in the body. Keywords: carbon nanotubes, reduced graphene oxide, bioelectronics, hardness, elastic modulus, adhesion.
- D. Scaini, L. Ballerini. Current Opinion in Neurobiology, 50, 50 (2018). DOI: 10.1016/j.conb.2017.12.009
- X. Zhang, W. Lu, G. Zhou, Q. Li. Adv. Mater., 32 (5), 1902028 (2020). DOI: 10.1002/adma.201902028
- Y. Wang, Y. Chen, S.D. Lacey, L. Xu, H. Xie, T. Li, V.A. Danner, L. Hu. Mater. Today, 21 (2), 186 (2018). DOI: 10.1016/j.mattod.2017.10.008
- A.Yu. Gerasimenko, U.E. Kurilova, M.S. Savelyev, D.T. Murashko, O.E. Glukhova. Compos. Structures, 260, 113517 (2021). DOI: 10.1016/j.compstruct.2020.113517
- A.Yu. Gerasimenko, E. Kitsyuk, U.E. Kurilova, I.A. Suetina, L. Russu, M.V. Mezentseva, A. Markov, A.N. Narovlyansky, S. Kravchenko, S.V. Selishchev, O.E. Glukhova. Polymers, 14 (9), 1866 (2022). DOI: 10.3390/polym14091866
- A. Kumar, K. Sharma, A.R. Dixit. Carbon Lett., 31 (2), 149 (2021). DOI: 10.1007/s42823-020-00161-x
- Y. Li, S. Wang, Q. Wang, M. Xing. Compos. Part B: Eng., 133, 35 (2018). DOI: 10.1016/j.compositesb.2017.09.024
- G. Yu, Y. Lu, J. Guo, M. Patel, A. Bafana, X. Wang, B. Qiu, C. Jeffryes, S. Wei, Z. Guo, E.K. Wujcik. Adv. Compos. Hybrid Mater., 1, 56 (2018). DOI: 10.1007/s42114-017-0004-3
- H. Beitollahi, F. Movahedifar, S. Tajik, S. Jahani. Electroanalysis, 31 (7), 1195 (2019). DOI: 10.1002/elan.201800370
- N.A. Demidenko, A.V. Kuksin, D.T. Murashko, N.G. Cherepanova, A.E. Semak, V.N. Bychkov, A.S. Komarchev, E.M. Eganova, A.A. Dudin, A.A. Pavlov, A.Y. Gerasimenko. 3D printed optics and additive photonic manufacturing II, 11349, 60 (2020). DOI: 10.1117/12.2564679
- Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim, S. Niu, H. Wang, X. Wang, A.M. Foudeh, J.B.-H. Tok, Z. Bao. Nature Biomed. Eng., 3 (1), 58 (2019). DOI: 10.1038/s41551-018-0335-6
- F. Sharifianjazi, A. Esmaeilkhanian, M. Moradi, A. Pakseresht, M.S. Asl, H. Karimi-Maleh, H.W. Jang, M. Shokouhimehr, R.S. Varma. Mater. Sci. Eng.: B, 264, 114950 (2021). DOI: 10.1016/j.mseb.2020.114950
- S. Li, Y. Cong, J. Fu. J. Mater. Chem. B, 9 (22), 4423 (2021). DOI: 10.1039/D1TB00523E
- A.Y. Gerasimenko, A.V. Kuksin, Y.P. Shaman, E.P. Kitsyuk, Y.O. Fedorova, A.V. Sysa, A.A. Pavlov, O.E. Glukhova. Nanomaterials, 11, 1875 (2021). DOI: 10.3390/NANO11081875
- A.Y. Gerasimenko, O.E. Glukhova, G.V. Savostyanov, V.M. Podgaetsky. J. Biomed. Opt., 22 (6), 065003 (2017). DOI: 10.1117/1.JBO.22.6.065003
- A.V. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen, J. Keinone. Phys. Rev. B, 63 (24), 245405 (2001). DOI: 10.1103/PhysRevB.63.245405
- S. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, T. Belytschko. Phys. Rev. B --- Condens. Matter Mater. Phys., 71 (11), 115403 (2005)
- L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen. Phys. Rev. Lett., 76 (6), 971 (1996). DOI: 10.1103/PhysRevLett.76.971