Cathodoluminescence of HPHT type IIa diamond with boron concentration up to 0.03 ppm
Kravets V. A.1, Klepikov I.V.2,3,4, Vasilyev E.A. 5
1Ioffe Institute, St. Petersburg, Russia
2LLC NPK “Almaz”, Saint-Petersburg, Russia
3 "Diamond UHF-electronics" laboratory of RTU MIREA, Moscow, Russia
4St. Petersburg State University, St. Petersburg, Russia
5St. Petersburg Mining University, St. Petersburg, Russia
Email: vladislav2033@yandex.ru

PDF
A study was carried out of a single-crystal multi-sector plate of type IIb HPHT diamond with a minimum boron level detectable by IR absorption spectra. In the growth sectors 111 and 110, the boron concentration was 0.03 and 0.01 ppm. In the growth sectors 100, 113, 115, the boron concentration is lower than the detection limit by absorption spectra. In the cathodoluminescence spectra of all sectors at a temperature of 77 K, broad structureless bands with maxima at 2.3 and 3.3 eV were revealed. The band with a maximum at 2.3 eV has two components with decay times in the ranges of 5-14 μs and 0.2-2 μs, respectively, differing in different growth sectors. The decay time of the band with a maximum of 3.3 eV is less than 100 ns. A difference in the intensity of luminescence of the sectors upon excitation by light of 220 nm and cathodoluminescence was revealed. The intensity of photoluminescence is minimal in the 110 and 115 sectors, and the cathodoluminescence of the 110 sector is the most intense. Comparison with previous studies showed that with a decrease in the boron concentration in HPHT diamond, the intensity and decay time of CL decrease. Keywords: IR spectroscopy, growth sector, luminescence properties, lifetimes.
  1. T. Kwak et al. Phys. Status Solidi A, 217 (12), 1900973 (2020). DOI:10.1002/pssa.201900973
  2. T. Shao, F. Lyu, X. Guo, J. Zhang, H. Zhang, X. Hu, A.H. Shen. Carbon., 167, 888 (2020). DOI:10.1016/j.carbon.2020.05.061
  3. A.T. Collins, E.C. Lightowlers, J.E. Field. The properties of diamond (Academic Press, London, UK, 1979)
  4. A.T. Collins. Semicond. Sci. Technol., 4 (8), 605 (1989). DOI:10.1088/0268-1242/4/8/001
  5. J. Walker. Rep. Prog. Phys., 42 (10), 1605 (1979). DOI: 10.1088/0034-4885/42/10/001
  6. P.J. Dean. Phys. Rev., 139 (2A), 588 (1965). DOI: 10.1103/PhysRev.139.A588
  7. H. Kawarada, Y. Yokota, Y. Mori, K. Nishimura, A. Hiraki. J. Appl. Phys., 67 (2), 983(1990). DOI: 10.1063/1.345708
  8. K. Zhang, C. Shen, L. Yan, Y. Ku, C. Zhao, Q. Lou, J. Zang, C. Niu, S. Cheng, S. Li, C. Shan. Nano Today, 55, 102176 (2024). DOI: 10.1016/j.nantod.2024.102176
  9. I.V. Klepikov, A.V. Koliadin, E.A. Vasilev. IOP Conf. Ser.: Mater. Sci. Eng. 286, 012035 (2017). DOI:10.1088/1757-899X/286/1/012035
  10. V.A. Kravets, I.B. Klepikov, E.A. Vasiliev. FTT 65 (11), 1995 (2023). DOI: 10.61011/FTT.2023.11.56555.99
  11. V.A. Kravets, I.B. Klepikov, E.A. Vasiliev. Opt. and spektr., 131 (11), 1587 (2023). DOI: 10.61011/EOS.2025.02.61099.7039-24
  12. I. Kiflawi, A.R. Lang. Phil. Mag. 30 (1), 219 (1974). DOI:10.1080/14786439808206549
  13. S.J. Pennycook, L.M. Brown, A.J. Craven. Phil. Mag., 41 (4), 589 (1980). DOI:10.1080/01418618008239335
  14. N. Yamamoto, J.C.H. Spence, D. Fathy. Phil. Mag. B, 49 (6), 609 (1984). DOI: 10.1080/13642818408227648
  15. A.T. Collins, A.W.S. Williams. J. Phys. C, 4, 1789 (1971). DOI:10.1088/0022-3719/4/13/030
  16. B. Dishler. Handbook of Spectral Lines in Diamond (Springer, 2012)
  17. M.V. Zamoryanskaya, S.G. Konnikov, A.N. Zamoryanskii. Instrum. Exp. Tech., 47 (4), 477 (2004). DOI:10.1023/B:INET.0000038392.08043.d6
  18. D. Fisher, S.J. Sibley, C.J. Kelly. J. Phys.: Condens. Matter., 21 (36), 364213 (2009). DOI: 10.1088/0953-8984/21/36/364213
  19. S. Karna, D.V. Martyshkin, Y.K. Vohra, S.T. Weir. MRS Proc., 1519 (1), 327 (2013). DOI:10.1557/opl.2012.1759
  20. G. Davies, P.L. Walker, P.A. Thrower. In: Chemistry and Physics of Carbon, eds P.L. Walker Jr, P.A. Thrower (Dekker, N.Y., 1977), p. 34
  21. R. Burns, V. Cvetkovic, C.N. Dodge, D.J.F. Evans, M.-L.T. Rooney, P. Spear, C. Welbourn. J. Crystal Growth, 104 (2), 257 (1990). DOI:10.1016/0022-0248(90)90126-6
  22. L.H.G. Tizei et al. Phys. Status Solidi A, 210 (10), 2060 (2013). DOI 10.1002/pssa.201300044
  23. P.B. Klein, M.D. Crossfield, J.A. Freitas Jr, A.T. Collins. Phys. Rev. B, 51 (15), 9634 (1995). DOI: 10.1103/PhysRevB.51.9634
  24. V.P. Mironov et al. AIP Conf. Proc., 2392, 020010 (2021). DOI: 10.1063/5.0061972

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru