Excitation mechanism of pulsed cathodoluminescence of cerium in yttrium-aluminum garnet
Solomonov V. I.
1, Lisenkov V. V.
1, Spirina A. V.
1, Makarova A. S.
11Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: plasma@iep.uran.ru, lisenkov@iep.uran.ru, rasuleva@iep.uran.ru, anniebubnova@mail.ru
The pulsed cathodoluminescence of a cerium ion in ceramic samples of yttrium-aluminum garnet with a ceria content of 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 at.% was studied. These samples were irradiated in air at room temperature with a 2 ns-duration electron beam with an average electron energy of 170 keV and a current density of 130 A/cm2. It enables to simulate the external ionizing radiation for scintillators. Two broad luminescence bands were observed at 570 nm and at 350 nm, being the results of the Ce3+ ion d-f transition and the recombination of a self-trapped exciton, respectively. The cerium luminescence band center shifts to the long-wavelength region with an increase in the content of ceria. It is found that the intensity decay of the cerium band, measured for each concentration at a wavelength of 570 nm, is characterized by two maxima in the nanosecond (tm1~3 ns) and microsecond (tm2~1.3 μs) time intervals. The first maximum is shown to be formed due to, firstly, the excitation of Ce3+ d-levels by secondary electrons generated by beam electrons and, secondly, spontaneous emission with a characteristic time of taus=100±10 ns. The second maximum arises when the excited Ce3+ is formed during the recombination of Ce2+ and Ce4+ ions produced by the electron beam. After the second maximum, the intensity decay of the band is described by a hyperbolic law with a characteristic time of 30-75 μs, depending on the content of cerium ions, and the light sum of this recombination luminescence is 60% of the total luminescence light sum of the band. The luminescence intensity decay of the band at 350 nm is monotonic and a characteristic decay time is 63.7 ns for a sample with a ceria content of 0.1 at.% and about 10.5 ns for samples with a ceria content of 0.5-5 at.%. Keywords: pulsed cathodoluminescence, cerium, yttrium-aluminum garnet, kinetics, rise, decay, characteristic times.
- K.J. Wilson, R. Alabd, M. Abolhasan, M. Safavi-Naeini, D.R. Franklin. Sci. Rep., 10 (1), 1409 (2020). DOI: 10.1038/s41598-020-58208-y
- A.A. Fyodorov, V.B. Pavlenko, M.V. Korzhik, W.P. Trower, R.F. Zuevesky. Radiat. Meas., 26 (2), 215 (1996). DOI: 10.1016/1350-4487(95)00293-6
- A. Ikesue. Ceram. Soc. Jpn., 108 (1263), 1020 (2000). DOI: 10.2109/jcersj.108.1263_1020
- V.V. Osipov, A.V. Ishchenko, V.A. Shitov, R.N. Maksimov, K.E. Lukyashin, V.V. Platonov, A.N. Orlov, S.N. Osipov, V.V. Yagodin, L.V. Viktorov, B.V. Shulgin. Opt. Mat., 71, 98 (2017). DOI: 10.1016/j.optmat.2016.05.016
- M. Nikl, V.V. Laguta, A. Vedda. Phys. Stat. Sol. B, 245 (9), 1701 (2008). DOI: 10.1002/pssb.200844039
- S.N. Bagayev, V.V. Osipov, S.M. Vatnik, V.A. Shitov, I.Sh. Shteinberg, I.A. Vedin, P.F. Kurbatov, K.E. Luk'yashin, R.N. Maksimov, V.I. Solomonov, P.E. Tverdokhleb. Quantum Electron., 45 (5), 492 (2015). DOI: 10.1070/QE2015v045n05ABEH015769
- S.N. Bagayev, V.V. Osipov, E.V. Pestryakov, V.I. Solomonov, V.A. Shitov, R.N. Maksimov, A.N. Orlov, V.V. Petrov. J. Appl. Mech. and Techn. Phys., 56 (1), 150 (2015). DOI: 10.1134/S0021894415010228
- V.I. Solomonov, S.G. Michailov, A.I. Lipchak, V.V. Osipov, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, M.R. Ulmaskulov. Laser Physics, 16, 126 (2006). DOI: 10.1134/S1054660X06010117
- V.I. Solomonov, A.V. Spirina, A.S. Makarova. Phys. Solid State, 64 (13), 2088 (2022). DOI: 10.21883/PSS.2022.13.52306.24s
- V. Solomonov, A. Spirina, A. Makarova, A. Lipchak, A. Spirin, V. Lisenkov. J. Opt. Technol., 89 (12), 728 (2022). DOI: 10.1364/JOT.89.000728
- V.I. Solomonov, V.V. Osipov, V.A. Shitov, K.E. Luk'yashin, A.S. Bubnova. Opt. Spectrosc., 128 (1), 5 (2020). DOI: 10.1134/S0030400X20010221
- B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F.A. Selim, H. Chen. J. Mater. Chem. C, 7, 4057 (2019). DOI: 10.1039/C8TC06600K
- E.F. Polisadova, Tao Han, V.I. Oleshko, D.T. Valiev, V.A. Vaganov, C. Zhanga, A.G. Burachenko. Fund. Research, 12 (1), 103 (2017). DOI: 10.17513/fr.41987
- D.T. Sviridov, R.K. Sviridova, Yu.F. Smirnov. Opticheskie spektry ionov perekhodnyh metallov v kristallah (Nauka, M., 1976) (in Russian)
- S.N. Ivanov, V.V. Lisenkov. Tech. Phys., 55 (1), 53 (2010). DOI: 10.1134/S1063784210010093
- B.I. Solomonov, S.G. Mikhailov. Impul'snaya katodolyuminescenciya i ee primenenie dlya analiza kondensirovannyh veshchestv (UrO RAN, Ekaterinburg, 2003) (in Russian)
- R.Yu. Shendrick, A.S. Myasnikova, A.V. Egranov, E.A. Radzhabov. Opt. Spectrosc., 116 (5), 845 (2014). DOI: 10.1134/S0030400X14050221
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.