The photolysis of paracetamol in aqueous solution influenced by ultraviolet radiation
Bazyl' O.K. 1, Tchaikovskaya O.N. 1,2, Bocharnikova E.N. 1,2, Bezlepkina N.P.1,2, Spirina A.V. 2, Mayer G.V. 1
1Tomsk State University, Tomsk, Russia
2Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: olga.k.bazyl@gmail.com, tchon@phys.tsu.ru, bocharnikova.2010@mail.ru, nadezhda.bezlepkina174833@mail.ru, alfiya_r@list.ru, mayer_gv@mail.tsu.ru

PDF
Experimental and theoretical studies of electronic spectra of paracetamol in water after exposure to UV radiation are presented. Theoretical studies were performed using the quantum-chemical modified INDO/s method. Paracetamol-water complexes in a 1 : 1 ratio were determined. Chemical bonds of paracetamol were revealed, the rupture of which leads to the formation of several photoproducts. To interpret changes in the absorption spectra of paracetamol after exposure to UV radiation, electronic absorption spectra of the identified photoproducts and their complexes with the paracetamol anion were calculated. It was shown that the rupture of chemical bonds and the formation of paracetamol photoproducts occurs in the singlet state by the predissociation mechanism. The calculation results are confirmed by experimental data. Three photoproducts (2-amino-5-hydroxyacetophenone, para-aminophenol, peroxyether) formed as a result of the rupture of single bonds in the CNHCOCH3 fragment were proven. It has been shown that the band in the absorption spectrum in the region of λmax=380 nm after UV irradiation of paracetamol in water is formed by a structure composed of hydrogen-bonded complex at the oxygen of the carboxyl group of the paracetamol anion with the main photoproduct of its decay 2-amino-5-hydroxyacetophenone. Keywords: paracetamol, absorption, photolysis, fluorescence, H-bonded complexes.
  1. G.G. Graham, K.F. Scott. Am. J. Ther., 12 (1), 46 (2005). DOI: 10.1097/00045391-200501000-00008
  2. S.S. Ayoub. Temperature, 8 (4), 351 (2021). DOI: 10.1080/23328940.2021.1886392
  3. G.W. Przyby a, K.A. Szychowski, J. Gminski. Clin. Exp. Pharmacol. Physiol., 48 (1), 3 (2021). DOI: 10.1111/1440-1681.13392
  4. M. Yan, Y. Huo, S. Yin, H. Hu. Redox Biol., 17, 274 (2018). DOI: 10.1016/j.redox.2018.04.019
  5. O.V. Ryzhkova. Differentsial'naya diagnostika khronicheskih gepatitov: uchebnoe posobie (IGMU, Irkutsk, 2020) (in Russian)
  6. S. Fatima, N. Asif, R. Ahmad, T. Fatma. Environ. Sci. Pollut. Res. Int., 27 (28), 35208 (2020). DOI: 10.1007/s11356-020-09802-0
  7. C. Nnodum, K.A. Yusuf. IJSRM., 10, 56 (2022). DOI: 10.18535/ijsrm/v10i5.c1
  8. Angstrem . Wennmalm, B. Gunnarsson. Drug Inf. J., 39 (3), 291 (2005). DOI: 10.1177/009286150503900307
  9. S. Wu, L. Zhang, J. Chen. Appl. Microbiol. Biotechnol., 96 (4), 875 (2012). DOI: 10.1007/s00253-012-4414-4
  10. F.J. Chacon, M.L. Cayuela, M.A. Sanchez-Monedero. Environ. Pollut., 307, 119546 (2022). DOI: 10.1016/j.envpol.2022.119546
  11. W.J. Lee, P.S. Goh, W.J. Lau, A.F. Ismail. Arab. J. Sci. Eng., 45, 7109 (2020). DOI: 10.1007/s13369-020-04446-1
  12. Y. Vieira, J.E. Spode, G.L. Dotto, J. Georgin, D.S. Franco, G.S. dos Reis, E.C. Lima. Environ. Chem. Lett., 22 (5), 2343 (2024). DOI: 10.1007/s10311-024-01751-1
  13. A.G. Al-Kaf, K.M. Naji, Q.Y.M. Abdullah, W.H. Ali Edrees. Chron. Pharm. Sci., 1 (6), 341 (2017)
  14. M. Chen, J. Liu, Y. Bi, S. Rehman, Z. Dang, P. Wu. J. Hazard. Mater., 388, 122078 (2020). DOI: 10.1016/j.jhazmat.2020.122078
  15. I.A. Khodov, R.S. Kumeev, M.Yu. Nikiforov, V.A. Golubev, T.A. Alper. Izv. vuzov. Khimiya i khimicheskaya tekhnologiya, 3, 106 (2013)
  16. M. Martignas, E. Oliveros, M.-T. Maurette, C. Claparols. Photochem. Photobiol. Sci., 12, 527 (2013). DOI: 10.1039/c2pp25341k
  17. N.P. Bezlepkina, E.N. Bocharnikova, O.N. Tchaikovskaya, G.V. Mayer, V.I. Solomonov, A.S. Makarova, A.V. Spirina, S.A. Chaikovsky. J. Fluoresc. (2024). DOI: 10.1007/s10895-024-03640-w
  18. V.Ya. Artuykhov, A.I. Galeeva. Izv. vuzov. Fizika (in Russian). 29 (11), 96 (1986)
  19. V.Ya. Artuykhov. J. Struct. Chem., 19, 364 (1978). DOI: 10.1007/BF 0075 3260
  20. E. Scroco, J. Tomasi. Adv. Quantum. Chem., 11, 115 (1978)
  21. V.A. Blatov. Semiempirical computational methods of quantum chemistry: a textbook (Publishing house "University Group", Samara, 2005) (in Russian)
  22. M.J. Dewar, R.C. Dougherty. The PMO Theory of Organic Chemistry (Springer, US, 2012)
  23. Kitaygorodsky, P.M. Zorky, V.K. Belsky. Stroenie organicheskogo veshchestva ( dannye strukturnykh issledovanij 1929-1970 gg.) (Nauka, M., 1980) (in Russian)
  24. O.N. Tchaikovsky, O.K. Bazyl, E.N. Bocharnikova, N.P. Bezlepkina, G.V. Mayer. Izv. vuzov. Physics, 67 (12), (2024) (in Russian)
  25. G.V. Mayer, O.K. Bazyl, V.Ya. Artyukhov. Opt. and spectr., 72 (6), 1471 (1992)
  26. O.K. Bazyl, V.Ya. Artyukhov, G.V. Mayer, I.V. Sokolova. KhVE, 35 (1), 33 (2001)
  27. V.A. Svetlichny, O.N. Tchaikovsky, O.K. Bazyl, R.T. Kuznetsova, I.V. Sokolova, T.N. Kopylova, Yu.P. Meshalkin. KhVE, 35 (4), 288 (2001)
  28. O.K. Bazyl, E.N. Bocharnikova, O.N. Tchaikovsky, G.V. Mayer. Izv. vuzov. Fizika, 64 (11), 14 (2021) (in Russian)
  29. L.V. Gurvich, G.V. Karachevtsev, V.N. Kondratiev, Yu.A. Lebedev, V.A. Medvedev, V.K. Potapov, Yu.S. Khodeev. Energiya razryva khimicheskih svyazej. Potentsialy ionizacii i srodstva k elektronu (Nauka, M., 1974) (in Russian)
  30. L. Bellami. Infrakrasnyye spektry slozhnykh molekul (Izdatel'stvo inostrannoy literatury, M., 1957)(in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru