Formation of electroinduced near-surface layers in the polar direction of triglycine sulfate crystals
Akkuratov V. I.
1, Kulikov A. G.
1, Pisarevsky Yu. V.
1, Ivanova E. S.
11Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: def_93@list.ru, ontonic@gmail.com, yupisarev@yandex.ru, ivanova.el.ser@gmail.com
Using the X-ray topography method, images of near-surface charge layers in pyroelectric crystal of triglycine sulfate were obtained for the first time. These charge layers were formed by internal field of triglycine sulfate crystal and by applied external electric field along the polar direction [010]. These layers were detected by increase in the integral intensity of X-ray radiation, which indicates the formation of an extinction contrast for the diffraction reflection 060 and much less pronounced changes for 400 reflection. With an increase in the external field strength up to 150 V/mm, an increase in the intensity in these regions and no changes in the center of the crystal were observed, which indicates compensation of the electric field in the volume due to the accumulation of charge carriers in a layer with a thickness of 1 mm. This effect depends on the polarity and is reversible when the external electric field is removed. Application of the field along the non-polar direction [100] does not lead to changes in the topograms. Keywords: near-surface charged layer, X-ray diffractometry, X-ray topography, ferroelectrics, external electric field, charge carrier migration.
- W. Kanzig. Phys. Rev. 98, 2, 549 (1955). DOI: https://doi.org/10.1103/PhysRev.98.549
- B.B. Tian, Y.Liu, L.F. Chen, J.L.Wang, S. Sun, H. Shen, J.L. Sun, G.L. Yuan, S. Fusil, V. Garcia, B. Dkhil, X.J. Meng, J.H. Chu. Sci. Rep., 5, 1, 18297 (2015). DOI: https://doi.org/10.1038/srep18297
- D.A. Zolotov, A.V. Buzmakov, D.A. Elfimov, V.E. Asadchikov, F.N. Chukhovskii. Crystallogr. Rep. 62, 1, 20 (2017)
- A.G. Kulikov, N.V. Marchenkov, A.E. Blagov, K.G. Kozhemyakin, M.Yu. Nasonov, S.S. Pashkov, Yu.V. Pisarevskii, G.N. Cherpukhina. Acoust. Phys. 62, 6, 694 (2016). DOI: 10.1134/S1063771016050080
- N.I. Snegirev, A.G. Kulikov, I.S. Lyubutin, A.Yu. Seregin, S.V. Yagupov, M.B. Strugatsky. JETP Letters 119, 6, 464 (2024). DOI: 10.1134/S0021364024600484
- E.S. Ibragimov, A.G. Kulikov, N.V. Marchenkov, Yu.V. Pisarevsky, A.E. Blagov, M.V. Kovalchuk. Phys. Solid State 64, 11, 1723 (2022). DOI: 10.21883/PSS.2022.11.54197.421
- A.G. Kulikov, A.E. Blagov, N.V. Marchenkov, V.A. Lomonov, A.V. Vinogradov, Yu.V. Pisarevsky, M.V. Kovalchuk. JETP Letters 107, 10, 646 (2018). DOI: 10.1134/S0021364018100120
- J. Hanzig, M. Zschornak, F. Hanzig, E. Mehner, H. Stocker, B. Abendroth, C. Roder, A. Talkenberger, G. Schreiber, D. Rafaja, S. Gemming, D.C. Meyer. Phys. Rev. B. 88, 024104 (2013). DOI: https://doi.org/10.1103/PhysRevB.88.024104
- V. Akkuratov, A. Kulikov, Yu. Pisarevsky, A. Blagov, M. Kovalchuk. J. Appl. Crystallogr. 56, 1, (2023). DOI: 10.1107/S1600576722012183
- V.V. Lider. Phys. Solid State 63, 189 (2021). DOI: 10.21883/FTT.2021.02.50461.212
- D. Bowen, B. Tanner. High resolution X-ray diffractometry and topography. CRC press. (1998) 252 p
- C. Bowen, J. Taylor, E. Leboulbar, D. Zabek, A. Chauhan, R. Vaish. Energy Environ. Scie. 7, 10 (2014). DOI: https://doi.org/10.1039/C4EE01759E
- R.W. Whatmore. Rep., Prog. Phys. 49, 12 (1986). DOI: 10.1088/0034-4885/49/12/002
- S. Fletcher, E. Keve, A. Skapski. Ferroelectrics 14, 775 (1976). DOI: https://doi.org/10.1080/00150197608237797
- M. Kay, R. Kleinberg. Ferroelectrics 5, 45 (1973). DOI: https://doi.org/10.1080/00150197308235778
- N. Nakatani. Jpn. J. Appl. Phys. 18, 3, 491 (1979). DOI:
- V.P. Konstantinova, I.M. Sil'vestrova, V.A. Yurin, Kristallografiya 4, 125 (1959). DOI: 10.1143/JJAP.18.491
- R. Gainutdinov, E. Ivanova, E. Petrzhik, A. Lashkova, T. Volk. JETP Letters 106, 97 (2017). DOI: https://doi.org/10.1134/S0021364017140053
- V.P. Konstantinova, I.M. Silvestrova, K.S. Aleksandrov. Sov. Phys. Crystallogr. 4, 1, 69 (1959)
- C.J. Raj, S. Kundu, K.B.R. Varma. Appl. Phys. A 105, 1025 (2011). DOI: https://doi.org/10.1007/s00339-011-6541-7
- S. Hoshino, T. Mitsui, F. Jona, R. Pepinsky. Phys. Rev. 107, 5, 1255 (1957). DOI: https://doi.org/10.1103/PhysRev.107.1255
- S. Triebwasser. IBM J. Res. Dev. 2, 3, 212 (1958). DOI: 10.1147/rd.23.0212
- W. Osak, K. Tkacz-Smiech, C. Strzalkowska. Ferroelectrics 158, 1, 331 (1994). DOI: https://doi.org/10.1080/00150199408216038
- W. Osak. Z. Naturforsch. A 52, 621 (1997). DOI: https://doi.org/10.1515/zna-1997-8-913
- "X-ray Server" online program website https://x-server.gmca.aps.anl.gov/x0h.html
- R.B. Lal, A.K. Batra. Ferroelectrics 142, 51 (1993). DOI: 10.1080/00150199308237884
- A. Izrael, J.F. Petroff, A. Authier, Z. Malek. J. Cryst. Growth 16, 2, 131 (1972). DOI: 10.1016/0022-0248(72)90104-2
- A. Authier. Adv. X-ray Anal. 10, 9 (1966)
- J. Hanzig, M. Zschornak, E. Mehner, F. Hanzig, W. Munchgesang, T. Leisegang, H. Stocker, D.C. Meyer. J. Phys. Condens. Matter 28, 225001 (2016). DOI: 10.1088/0953-8984/28/22/225001
- C. Ludt, E. Ovchinnikova, A. Kulikov, D. Novikov, S. Gemming, D.C. Meyer, M. Zschornak. Crystals 11, 693 (2021). DOI: 10.3390/cryst11060693
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.