Physics of the Solid State
Volumes and Issues
Formation of electroinduced near-surface layers in the polar direction of triglycine sulfate crystals
Akkuratov V. I. 1, Kulikov A. G. 1, Pisarevsky Yu. V. 1, Ivanova E. S. 1
1Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: def_93@list.ru, ontonic@gmail.com, yupisarev@yandex.ru, ivanova.el.ser@gmail.com

PDF
Using the X-ray topography method, images of near-surface charge layers in pyroelectric crystal of triglycine sulfate were obtained for the first time. These charge layers were formed by internal field of triglycine sulfate crystal and by applied external electric field along the polar direction [010]. These layers were detected by increase in the integral intensity of X-ray radiation, which indicates the formation of an extinction contrast for the diffraction reflection 060 and much less pronounced changes for 400 reflection. With an increase in the external field strength up to 150 V/mm, an increase in the intensity in these regions and no changes in the center of the crystal were observed, which indicates compensation of the electric field in the volume due to the accumulation of charge carriers in a layer with a thickness of 1 mm. This effect depends on the polarity and is reversible when the external electric field is removed. Application of the field along the non-polar direction [100] does not lead to changes in the topograms. Keywords: near-surface charged layer, X-ray diffractometry, X-ray topography, ferroelectrics, external electric field, charge carrier migration.
  1. W. Kanzig. Phys. Rev. 98, 2, 549 (1955). DOI: https://doi.org/10.1103/PhysRev.98.549
  2. B.B. Tian, Y.Liu, L.F. Chen, J.L.Wang, S. Sun, H. Shen, J.L. Sun, G.L. Yuan, S. Fusil, V. Garcia, B. Dkhil, X.J. Meng, J.H. Chu. Sci. Rep., 5, 1, 18297 (2015). DOI: https://doi.org/10.1038/srep18297
  3. D.A. Zolotov, A.V. Buzmakov, D.A. Elfimov, V.E. Asadchikov, F.N. Chukhovskii. Crystallogr. Rep. 62, 1, 20 (2017)
  4. A.G. Kulikov, N.V. Marchenkov, A.E. Blagov, K.G. Kozhemyakin, M.Yu. Nasonov, S.S. Pashkov, Yu.V. Pisarevskii, G.N. Cherpukhina. Acoust. Phys. 62, 6, 694 (2016). DOI: 10.1134/S1063771016050080
  5. N.I. Snegirev, A.G. Kulikov, I.S. Lyubutin, A.Yu. Seregin, S.V. Yagupov, M.B. Strugatsky. JETP Letters 119, 6, 464 (2024). DOI: 10.1134/S0021364024600484
  6. E.S. Ibragimov, A.G. Kulikov, N.V. Marchenkov, Yu.V. Pisarevsky, A.E. Blagov, M.V. Kovalchuk. Phys. Solid State 64, 11, 1723 (2022). DOI: 10.21883/PSS.2022.11.54197.421
  7. A.G. Kulikov, A.E. Blagov, N.V. Marchenkov, V.A. Lomonov, A.V. Vinogradov, Yu.V. Pisarevsky, M.V. Kovalchuk. JETP Letters 107, 10, 646 (2018). DOI: 10.1134/S0021364018100120
  8. J. Hanzig, M. Zschornak, F. Hanzig, E. Mehner, H. Stocker, B. Abendroth, C. Roder, A. Talkenberger, G. Schreiber, D. Rafaja, S. Gemming, D.C. Meyer. Phys. Rev. B. 88, 024104 (2013). DOI: https://doi.org/10.1103/PhysRevB.88.024104
  9. V. Akkuratov, A. Kulikov, Yu. Pisarevsky, A. Blagov, M. Kovalchuk. J. Appl. Crystallogr. 56, 1, (2023). DOI: 10.1107/S1600576722012183
  10. V.V. Lider. Phys. Solid State 63, 189 (2021). DOI: 10.21883/FTT.2021.02.50461.212
  11. D. Bowen, B. Tanner. High resolution X-ray diffractometry and topography. CRC press. (1998) 252 p
  12. C. Bowen, J. Taylor, E. Leboulbar, D. Zabek, A. Chauhan, R. Vaish. Energy Environ. Scie. 7, 10 (2014). DOI: https://doi.org/10.1039/C4EE01759E
  13. R.W. Whatmore. Rep., Prog. Phys. 49, 12 (1986). DOI: 10.1088/0034-4885/49/12/002
  14. S. Fletcher, E. Keve, A. Skapski. Ferroelectrics 14, 775 (1976). DOI: https://doi.org/10.1080/00150197608237797
  15. M. Kay, R. Kleinberg. Ferroelectrics 5, 45 (1973). DOI: https://doi.org/10.1080/00150197308235778
  16. N. Nakatani. Jpn. J. Appl. Phys. 18, 3, 491 (1979). DOI:
  17. V.P. Konstantinova, I.M. Sil'vestrova, V.A. Yurin, Kristallografiya 4, 125 (1959). DOI: 10.1143/JJAP.18.491
  18. R. Gainutdinov, E. Ivanova, E. Petrzhik, A. Lashkova, T. Volk. JETP Letters 106, 97 (2017). DOI: https://doi.org/10.1134/S0021364017140053
  19. V.P. Konstantinova, I.M. Silvestrova, K.S. Aleksandrov. Sov. Phys. Crystallogr. 4, 1, 69 (1959)
  20. C.J. Raj, S. Kundu, K.B.R. Varma. Appl. Phys. A 105, 1025 (2011). DOI: https://doi.org/10.1007/s00339-011-6541-7
  21. S. Hoshino, T. Mitsui, F. Jona, R. Pepinsky. Phys. Rev. 107, 5, 1255 (1957). DOI: https://doi.org/10.1103/PhysRev.107.1255
  22. S. Triebwasser. IBM J. Res. Dev. 2, 3, 212 (1958). DOI: 10.1147/rd.23.0212
  23. W. Osak, K. Tkacz-Smiech, C. Strzalkowska. Ferroelectrics 158, 1, 331 (1994). DOI: https://doi.org/10.1080/00150199408216038
  24. W. Osak. Z. Naturforsch. A 52, 621 (1997). DOI: https://doi.org/10.1515/zna-1997-8-913
  25. "X-ray Server" online program website https://x-server.gmca.aps.anl.gov/x0h.html
  26. R.B. Lal, A.K. Batra. Ferroelectrics 142, 51 (1993). DOI: 10.1080/00150199308237884
  27. A. Izrael, J.F. Petroff, A. Authier, Z. Malek. J. Cryst. Growth 16, 2, 131 (1972). DOI: 10.1016/0022-0248(72)90104-2
  28. A. Authier. Adv. X-ray Anal. 10, 9 (1966)
  29. J. Hanzig, M. Zschornak, E. Mehner, F. Hanzig, W. Munchgesang, T. Leisegang, H. Stocker, D.C. Meyer. J. Phys. Condens. Matter 28, 225001 (2016). DOI: 10.1088/0953-8984/28/22/225001
  30. C. Ludt, E. Ovchinnikova, A. Kulikov, D. Novikov, S. Gemming, D.C. Meyer, M. Zschornak. Crystals 11, 693 (2021). DOI: 10.3390/cryst11060693

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru