Obtaining protective coatings based on few-layer graphene particles by chemical crosslinking
Vozniakovskii A. A. 1, Voznyakovskii A.P. 2, Titova S. I. 1, Posylkina O.I. 3, Kidalov S. V. 1, Neverovskaya A. Yu. 2, Auchynnikau Y.V. 4
1Ioffe Institute, St. Petersburg, Russia
2S.V. Lebedev research Institute for Synthetic Rubber, Saint-Petersburg, Russia
3Physical Technical Institute, National Academy of Sciences of Balarus, Minsk, Belarus
4Yanka Kupala Grodno State University, Grodno, Belarus
Email: alexey_inform@mail.ru, voznap@mail.ru, sofia.titova@internet.ru, ola-gapa@yandex.ru, Kidalov@mail.ioffe.ru, anna-neverovskaya@yandex.ru, ovchin@grsu.by

PDF
A new method for producing coatings based on few-layer graphene obtained under conditions of self-propagating high-temperature synthesis is described. The coating is obtained by chemical cross-linking of few-layer graphene particles by their functional groups. It has been established that these coatings can effectively protect a metal substrate from the adverse effects of strong acids. Keywords: coatings, few-layer graphene, self-propagating high-temperature synthesis, chemical cross-linking method.
  1. M. Sathish, N. Radhika, B. Saleh. J. Bio Tribo-Corr., 9 (2), 35 (2023). DOI: 10.1007/s40735-023-00754-9
  2. K. Ollik, M. Lieder. Coatings., 10 (9), 883 (2020). DOI: 10.3390/coatings10090883
  3. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau. Nano Lett., 8 (3), 902 (2008). DOI: 10.1021/nl0731872
  4. C. Lee, X. Wei, J.W. Kysar, J. Hone. Sci., 321 (5887), 385 (2008). DOI: 10.1126/science.1157996
  5. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff. Adv. Mater., 22 (35), 3906 (2010). DOI: 10.1002/adma.2010010688
  6. S. Pourhashem, E. Ghasemy, A. Rashidi, M.R. Vaezi. J. Coat. Technol. Res., 17 (1), 19 (2020). DOI: 10.1007/s11998-019-00275-6
  7. B. Kulyk, M.A. Freitas, N.F. Santos, F. Mohseni, A.F. Carvalho, K. Yasakau, A.J.S. Fernandes, A. Bernardes, B. Figueiredo, R. Silva, J.T.F.M. Costa, Crit. Rev. Solid State Mater. Sci., 47 (3), 309, (2022). DOI: 10.1080/10408436.2021.1886046
  8. R. Zhang, X. Yu, Q. Yang, G. Cui, Z. Li. Constr. Build. Mater., 294, 123613 (2021). DOI: 10.1016/j.conbuildmat.2021.123613
  9. P. Huang, Y. Li, G. Yang, Z.-X. Li, Y.-Q. Li, N. Hu, S.-Y. Fu, K.S. Novoselov. Nano Mater. Sci., 3 (1), 1 (2021). DOI: 10.1016/j.nanoms.2020.09.001
  10. N.A. Nebogatikova, I.V. Antnova, R.A. Soots, K.A. Kokh, E.S. Klimova, V.A. Volodin. ZhTF, 92 (4), 261 (2024). (in Russian) DOI: 10.61011/JTF.2024.02.57081.281-23
  11. A.B. Loginov, R.R. Ismagilov, A.N. Obraztsov, I.V. Bozhev, S.N. Bokova-Sirosh, E.D. Obraztsova, B.A. Loginov. Tech. Phys., 64 (11), 1666 (2019). DOI: 10.1134/S1063784219110185
  12. S.P. Lebedev, S.Iu. Priobrazhenskii, A.V. Plotnikov, M.G. Mynbaeva, A.A. Lebedev. Tech. Phys., 68 (12), 648 (2022). DOI: 10.1134/S1063784223080169
  13. S.P. Lebedev, I.S. Barash, I.A. Eliseyev, P.A. Dementev, A.A. Lebedev, P.V. Bulat. Tech. Phys., 64 (12), 1843 (2019). DOI: 10.1134/S1063784219120144
  14. O. Kwon, Y. Choi, E. Choi, M. Kim, Y.C. Woo, D.W. Kim. Nanomaterials, 11 (3), 757 (2021). DOI: 10.3390/nano11030757
  15. X. Gu, Y. Zhao, K. Sun, C.L. Vieira, Z. Jia, C. Cui, Z. Wang, A. Walsh, S. Huang. Ultrason. Sonochem., 58, 104630 (2019). DOI: 10.1016/j.ultsonch.2019.104630
  16. A.P. Voznyakovskii, A.A. Vozniakovskii, S.V. Kidalov. Nanomaterials, 12 (4), 657 (2022). DOI: 10.3390/nano12040657
  17. A.P. Voznyakovskii, A.A. Neverovskaya, A.A. Vozniakovskii, S.V. Kidalov. Nanomaterials, 12 (5), 883 (2022). DOI: 10.3390/nano12050883
  18. S. Kidalov, A.P. Voznyakovskii, A.A. Vozniakovskii, S. Titova, Y. Auchynnikau. Materials, 16 (3), 1157 (2023). DOI: 10.3390/ma16031157
  19. Nanotechnologies --- Structural characterization of graphene --- Part 1: Graphene from powders and dispersions ISO/TS 21356-1
  20. A.P. Voznyakovskii, A.A. Vozniakovskii, S.V. Kidalov. Fullerenes, Nanotubes Carbon Nanostruct., 30 (1), 59 (2022). DOI: 10.1080/1536383X.2021.1993831
  21. S.V. Nesterov. Vliyanie fenolnykh soedinenii na protsess obrazovaniya poliuretanov i ikh termicheskuiyu stabilnost (Avtoref. diss., 2013)
  22. J.H. Saunders, K.C. Frish, Khimiya poliuretanov, Per. s angl. Z.A. Kochnovoi, Zh.T. Korkishko, pod.red. S.G. Entelisa (Izd-vo Khimiya, M., 1968), 470 s. (in Russian)
  23. S.T. Ioffe, A.N. Nesmeyanov. Metody elementoorganicheskoy khimii (Izd-vo AN, M., 1963), 562 s. (in Russian)
  24. F.T. Johra, J.W. Lee, W.G. Jung. J. Ind. Eng. Chem., 20 (5), 2883 (2014). DOI: 10.1016/j.jiec.2013.11.022
  25. S. Perumbilavil, P. Sankar, T. Priya Rose, R. Philip. Appl. Phys. Lett., 107 (5), 051104 (2015). DOI: 0.1063/1.4928124
  26. Z. Li, L. Deng, I.A. Kinloch, R.J. Young. Prog. Mater. Sci., 135, 101089 (2023). DOI: 10.1016/j.pmatsci.2023.101089

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru