Fabrication of B4C/TiB2 composite ceramics using boron carbide reduction
Gudyma T.S.
1, Khabirov R.R.
1, Krutskii Yu.L.
1, Cherkasova N.Yu
1, Bannov A.G.
1, Semenov A.O.
21Novosibirsk State Technical University, Novosibirsk, Russia
2Tomsk Polytechnic University, Tomsk, Russia
Email: gudymatan@mail.ru, xabirov.2016@stud.nstu.ru, krutskii@yandex.ru, cherkasova.2013@corp.nstu.ru, bannov_a@mail.ru, semenov_ao@tpu.ru
B4C/TiB2 composite ceramics were fabricated by pressing B4C/TiB2 powder mixtures, as well as by reaction pressing. The TiB2 phase content was 10-30 mol%. It was revealed that increasing the TiB2 additive content reduces open porosity and increases the relative density of composite ceramics. Visual analysis showed that simultaneous boron carbide synthesis and hot pressing makes it possible to obtain a B4C/10 mol% TiB2 material with uniformly distributed TiB2 grains throughout the B4C phase. The microhardness and fracture toughness of such a material were 41.1 GPa and 4.4 MPa·m0.5, respectively. The relative density was 99.9%. In the case of hot pressing of a pre-synthesized powder mixture, similar results were achieved with a higher content of the modifying additive, corresponding to 30 mol.% diboride. It has been shown that composite ceramics containing 30 mol% TiB2 have a higher thermal neutron absorption cross section compared to unmodified ceramics. Keywords: titanium diboride, nanofibrous carbon, boron carbide, refractory compounds.
- W.S. Rubink, V. Ageh, H. Lide, N.A. Ley, M.L. Young, D.T. Casem, E.J. Faierson, T.W. Scharf. J. Eur. Ceram. Soc., 41 (1), 3321 (2021). DOI: 10.1016/j.jeurceramsoc.2021.01.044
- I.J. Shon. Ceram. Int., 42 (16), 19406 (2016). DOI: 10.1016/j.ceramint.2016.08.132
- R.M. White, E.C. Dickey. J. Eur. Ceram. Soc., 34 (9), 2043 (2014). DOI: 10.1016/j.jeurceramsoc.2013.08.012
- D.V. Dik, T.S. Gudyma, A.A. Filippov, V.M. Fomin, Yu.L. Krutsky. Prikladnaya mekhanika i tekhnicheskaya fisika, 2 (81), 2024 (2020) (in Russian). DOI: 10.15372/PMTF202315362
- R. He, L. Jing, Z. Qu, Z. Zhou, S. Ai, W. Kai. Mater. Des., 71, 56 (2015). DOI: 10.1016/j.matdes.2015.01.002
- J.D. Clayton, J. Rodriguez, T.W. Scharf, C.L. Williams. J. Eur. Ceram. Soc., 41 (6), 3321 (2021). DOI: 10.1016/j.jeurceramsoc.2021.01.044
- O. Coban, M. Bugdayci, M.E. Acma. J. Australian Ceram. Soc., 58, 777 (2022). DOI: 10.1007/s41779-022-00714-5
- P. Svec, L. v Caploviv c. Process. Appl. Ceram., 16 (4), 358 (2022). DOI: 10.2298/PAC2204358S
- Y.L. Krutskii, N.Y. Cherkasova, T.S. Gudyma, O.V. Netskina, T.M. Krutskaya. Izv. Ferr. Metall., 51 (2), 93 (2021). DOI: 10.3103/S0967091221020029
- T.S.R.C. Murthy, B. Basu, R. Balasubramaniam, A.K. Suri, C. Subramanian, R.K. Fotedar. J. Am. Ceram. Soc., 89 (1), 131 (2006). DOI: 10.1111/j.1551-2916.2005.00652.x
- S. Failla, C. Melandri, L. Zoli, G. Zucca, D. Sciti. J. Eur. Ceram. Soc., 38 (9), 3089 (2018). DOI: 10.1016/j.jeurceramsoc.2018.02.041
- S.G. Huang, K. Vanmeensel, O.J.A. Malek, O. Van der Biest, J. Vleugels. Mater. Sci. Eng., 528 (3), 1302 (2011). DOI: 10.1016/j.msea.2010.10.022
- Y. Liu, Z. Li, Y. Peng, Y. Huang, Z. Huang, D. Zhang. Mater. Today Commun., 23, 100875 (2020). DOI: 10.1016/j.mtcomm.2019.100875
- T.S. Gudymajbibitem14 Avtoref. kand. diss. (Krasnoyarsk, SFU,2023) (in Russian)
- S. Yamada, K. Hirao, Y. Yamauchi, S. Kanzaki. J. Eur. Ceram. Soc., 23 (7), 1123 (2021). DOI: 10.1016/S0955-2219(02)00274-1
- D.V. Dudina, D.M. Hulbert, D. Jiang, C. Unuvar, S.J. Cytron, A.K. Mukherjee. J. Mater. Sci., 43 (10), 3569 (2008). DOI: 10.1007/s10853-008-2563-8
- Vl.V. Skorokhod, V.D. Krstic. Powder Metall. Met. Ceram., 39 (7), 414 (2000). DOI: 10.1023/A:1026625909365
- A.G. Bannov, V.V. Sokolov, K.D. Dyukova, V.V. Shinkarev, A.V. Ukhina, E.A. Maksimovskii, T.M. Krutskaya, G.G. Kuvshinov. Nanotechnol. Russ., 8 (3-4), 191 (2013). DOI: 10.1134/S1995078013020109
- P.B. Kurmashov, V.V. Maksimenko, A.G. Bannov, G.G. Kuvshinov. Khimicheskaya tekhnologiya, 10 (2013) (in Russian)
- V.A. Shestakov, T.S. Gudyma, Y.L. Krutskii, N.F. Uvarov, A.E. Brester, I.N. Skovorodin. Inorg. Mater., 57 (5), 481 (2021). DOI: 10.1134/S0020168521050083
- T.S. Gudyma, Yu.L. Krutsky, E.A. Maksimovsky, N.Yu. Tcherkasova, N.I. Lapekin, T.V. Larina. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional'nye pokrytiya, 17, 2 (35) (in Russian) DOI: 10.17073/1997-308X-2023-2-35-45
- GOST 2909-2014 Ogneupory. Metod opredeleniya kazhushcheisya plotnosty, otkrytoi i obshchei poristosti, vodopogloshcheniys (IPK Izd-vo standartov, M., 2014), s. 7 (in Russian)
- GOST 2999-75. Metally i splavy. Metod izmereniya tverdosty po Vikkersu (Izd-vo standartov, M., 1987), s. 29 (in Russian)
- GOST 2999-75. Metally i splavy. Metod izmereniya tverdosty po Vikkersu (IPK Izd-vo standartov, M., 1987), s. 29 (in Russian)
- T.Ya. Kosolapova. Svoistva, poluchenie i primenenie tugoplavkikh soedineny: sprav.izd. (Metallurgiya, M. (1986), s. 928 (in Russian)
- V.K. Rezepov, V.P. Denisov, N.A. Kirilyuk, Yu.G. Dragunov, S.B. Ryzhov. Reaktory VVER --- 1000 dlya atomnykh elektrostantsyi (NPO "Gidropress", M., 2004), s. 333 (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.