Physics of the Solid State
Volumes and Issues
Effect of Excess Hydrogen Flow in Reactor on PECVD Growth of Carbon Nanotubes
Bulyarskiy S. V.1, Molodenskiy M. S.1, L’vov P. E.1, Pavlov A. A.1, Anufriev Yu. V.1, Shaman Yu. P.1, Gusarov G. G.1, Modestov K. A.1, Sysa A. V.1, Shevchenko A. R.1
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
Email: bulyar2954@mail.ru, molodenskiy@mail.ru, lvovpe@sv.uven.ru, alexander.a.pavlov@gmail.com, anufriev.u@inme-ras.ru, shaman.yu.p@yandex.ru, geog1@mail.ru, k.modestov57@yandex.ru, sysa.artem@yandex.ru, starosta5050@gmail.com

PDF
The paper studies the effect of hydrogen flow on vapor-phase synthesis of carbon nanotubes in gas discharge plasma. Increasing the hydrogen flow in the reactor reduces the plasma temperature and increases the number of defects in the synthesized nanotubes. Analysis of the thermodynamics of synthesis shows that increasing the hydrogen concentration reduces the activity of the catalyst and reduces the amount of carbon supplied to the growing nanotube, which leads to an increase in the number of defects. Keywords: carbon nanotubes, synthesis, defects.
  1. S. Morais. Nanomaterials (Basel, Switzerland) 13, 19 (2023). https://doi.org/10.3390/nano13192674
  2. F.U. Siddiqui, S. Rathore. Int. J. Mech. Eng. Technol. 14, 5, 1 (2023)
  3. S.V. Bulyarskiy, A.A. Dudin, A.V. Lakalin, A.P. Orlov, A.A. Pavlov, R.M. Ryazanov, A.A. Shamanaev. Tech. Phys. 63, 6, 894 (2018). https://doi.org/10.1134/S1063784218060099
  4. K.L. Jensen, D.A. Shiffler, J.R. Harris, I.M. Rittersdorf, J.J. Petillo. J. Vac. Sci. Technol. B 35, 2 (2017). https://doi.org/10.1116/1.4968007
  5. M. Mauger, V.T. Binh. J. Vac. Sci. Technol. B 24, 2, 997 (2006). https://doi.org/10.1116/1.2179454
  6. D. Li, L. Tong. Processes 9, 1, 36 (2021). https://doi.org/10.3390/pr9010036
  7. S.-I. Jo, B.-J. Lee, G.-H. Jeong. J. Korean Phys. Soc. 76, 12, 1110 (2020). https://doi.org/10.3938/jkps.76.1110
  8. P. Ji, J. Chen, T. Huang, L. Zhuge, X. Wu. Diam. Relat. Mater. 109, 108067 (2020). https://doi.org/10.1016/j.diamond.2020.108067
  9. D. Mariotti, Y. Shimizu, T. Sasaki, N. Koshizaki. J. Appl. Phys. 101, 1 (2007). https://doi.org/10.1063/1.2409318
  10. P. Melnikov, V.A. Nascimento, I.V. Arkhangelsky, L.Z. Zanoni Consolo, L.C.S. de Oliveira. J. Therm. Anal. Calorim. 115, 1, 145 (2014). https://doi.org/10.1007/s10973-013-3339-1
  11. V.I. Gorbunkov, V.V. Kositsyn, V.I. Ruban, V.V. Shalai. Omsky nauchny vestnik. Seriya: Aviatsionno-raketnoe i energeticheskoe mashinostroenie 2, 3, 44 (2018). (in Russian). https://doi.org/10.25206/2588-0373-2018-2-3-44-50
  12. A. Thapa, Y.R. Poudel, R. Guo, K.L. Jungjohann, X. Wang, W. Li. Carbon 171, 188 (2021). https://doi.org/10.1016/j.carbon.2020.08.081
  13. S.V. Bulyarskii, V.P. Oleinikov. Physica Status Solidi B 146, 2, 439 (1988). https://doi.org/10.1002/pssb.2221460204
  14. S.V. Bulyarski, V.V. Fistul. Termodinamika i kinetika vzaimodeistvuyushchikh defektov v poluprovodnikakh. Fizmatlit, Moskva, (1997). 351 s. (in Russian)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru