Physics of the Solid State
Volumes and Issues
Study of crystal fragmentation under all-round compression
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
We studied the variation of the specific (per unit area) surface energy (σ) of a crystal from the normalized volume (v/v0) along the different isotherms based on the analytical method (i. e., without computer modeling). Here, v0 is the volume value at zero values of pressure and Kelvin temperature. It is shown that the function σ(v/v0) under a certain compression (v/v0)frS<1 passes into the negative value region. This behavior of the σ(v/v0) function at v/v0<(v/v0)frS should stimulate crystal fragmentation, in which the crystal will seek to increase its intercrystalline surface in any way. It is shown that the negative value of the function σ(v/v0) should stimulate both the fragmentation of the crystal structure and the heating of the fragmenting medium and the appearance of surface pressure in this medium due to the appearance of the inner surface. Calculations of the (v/v0)frS value for Ne, Li and Au crystals at different temperatures have been carried out. Based on the experimental data, the pressures were indicated, which correspond to the calculated (v/v0)frS values. It was shown that these pressures are quite achievable in modern experiments on the static compression of these crystals. Keywords: deformation, surface energy, nanocrystal, surface pressure.
  1. C.C. Zurkowski, J. Yang, F. Miozzi, S. Vitale, E.F. O'Bannon III, Z. Jenei, S. Chariton, V. Prakapenka, Y. Fei. Sci. Rep. 14, 1, 11412 (2024). https://doi.org/10.1038/s41598-024-61861-2
  2. P.W. Bridgman. Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure. Harvard University Press, Cambridge, Massachusetts (1964). 363 p. https://doi.org/10.4159/harvard.9780674731349
  3. S. Leoni, R. Ramlau, K. Meier, M. Schmidt, U. Schwarz. PNAS 105, 50, 19612 (2008). https://doi.org/10.1073/pnas.0805235105
  4. T.M. Gapontseva, M.V. Degtyarev, V.P. Pilyugin, T.I. Chashchukhina, L.M. Voronova, A.M. Patselov. Phys. Metals. Metallogr. 117, 4, 336 (2016). https://doi.org/10.1134/S0031918X16040062
  5. Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu. Mater. Sci. Eng.: R: Reports 133, 1 (2018). https://doi.org/10.1016/j.mser.2018.06.001
  6. A.M. Glezer, R.V. Sundeev, A.V. Shalimova, L.S. Metlov. Phys.-Uspekhi 66, 1, 32 (2023). https://doi.org/10.3367/UFNe.2021.07.039024
  7. V.K. Kumikov, Kh.B. Khokonov. Appl. Phys. 54, 3, 1346 (1983). https://doi.org/10.1063/1.332209
  8. S.N. Zhevnenko, I.S. Petrov, D. Scheiber, V.I. Razumovskiy. Acta Materialia 205, 116565 (2021). https://doi.org/10.1016/j.actamat.2020.116565
  9. S. Zhu, K. Xie, Q. Lin, R. Cao, F. Qiu. Adv. Colloid. Interface Sci. 315, 102905 (2023). https://doi.org/10.1016/j.cis.2023.102905
  10. M.N. Magomedov. Phys. Rev. B 109, 3, 035405 (2024). https://doi.org/10.1103/PhysRevB.109.035405
  11. M.N. Magomedov. Phys. Solid State 46, 5, 954 (2004). https://doi.org/10.1134/1.1744976
  12. M.N. Magomedov. Crystallogr. Rep. 62, 3, 480 (2017). https://doi.org/10.1134/S1063774517030142
  13. M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021). https://doi.org/10.1134/S1063783421090250
  14. M.N. Magomedov. Phys. Solid State 66, 3, 428 (2024)
  15. M.N. Magomedov. Tech. Phys. 58, 9, 1297 (2013). https://doi.org/10.1134/S106378421309020X
  16. M.N. Magomedov. Tech. Phys. 55, 9, 1382 (2010). https://doi.org/10.1134/S1063784210090240
  17. M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). https://doi.org/10.1134/S1063783420120197
  18. S.P. Kramynin. J. Phys. Chem. Solids 143, 109464 (2020). https://doi.org/10.1016/j.jpcs.2020.109464
  19. S.P. Kramynin. J. Phys. Chem. Solids 152, 109964 (2021). https://doi.org/10.1016/j.jpcs.2021.109964
  20. S.P. Kramynin. Phys. Metals. Metallogr. 123, 2, 107 (2022). https://doi.org/10.1134/S0031918X22020065
  21. S.P. Kramynin. Solid State Sci. 124, 106814 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106814
  22. A.K. Kyarov, A.I. Temrokov, B.V. Khaev. High Temperature 35, 3, 380 (1997)
  23. M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron. Neutron Technique 6, 3, 430 (2012). https://doi.org/10.1134/S1027451012050151
  24. M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron. Neutron Techniques 7, 6, 1114 (2013). https://doi.org/10.1134/S1027451013060104
  25. M.N. Magomedov. Tech. Phys. 61, 5, 722 (2016). https://doi.org/10.1134/S1063784216050145
  26. D.E. Grady. J. Mech. Phys. Solids 36, 3, 353 (1988). https://doi.org/10.1016/0022-5096(88)90015-4
  27. N. Amadou, T. de Resseguier. Phys. Rev. B 108, 17, 174109 (2023). https://doi.org/10.1103/PhysRevB.108.174109
  28. Y.Kh. Vekilov, O.M. Krasilnikov. Phys.-Uspekhi 52, 8, 831 (2009). https://doi.org/10.3367/UFNe.0179.200908f.0883
  29. L. Bellino, G. Florio, S. Giordano, G. Puglisi. Applications in Engineering Science 2, 100009 (2020). https://doi.org/10.1016/j.apples.2020.100009
  30. M.N. Magomedov. High Temperature 44, 4, 513 (2006). https://doi.org/10.1007/s10740-006-0064-5
  31. M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques 7, 4, 697 (2013). https://doi.org/10.1134/S1027451013030087
  32. M.N. Magomedov. High Temperature 47, 2, 219 (2009). https://doi.org/10.1134/S0018151X09020114
  33. M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). https://doi.org/10.21883/PSS.2022.07.54579.319
  34. R.E. Allen, F.W. De Wette. J. Chem. Phys. 51, 11, 4820 (1969). https://doi.org/10.1063/1.1671873
  35. R. Shuttleworth. Proceed. Phys. Soc. Section A 63, 5, 444 (1950). https://doi.org/10.1088/0370-1298/63/5/302
  36. W.R. Tyson, W.A. Miller. Surf. Sci. 62, 1, 267 (1977). https://doi.org/10.1016/0039-6028(77)90442-3
  37. L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar. Surface Sci. 411, 1-2, 186 (1998). https://doi.org/10.1016/s0039-6028(98)00363-x
  38. Q. Jiang, H.M. Lu, M. Zhao. J. Phys.: Condens. Matter 16, 4, 521 (2004). https://doi.org/10.1088/0953-8984/16/4/001
  39. B. Fu, W. Liu, Z. Li. Mater. Chem. Phys. 123, 2-3, 658 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.034
  40. B.B. Alchagirov, T.M. Taova, Kh.B. Khokonov. Trans. JWRI. Special Issue (Japan) 30, 287 (2001). https://repository.exst.jaxa.jp/dspace/handle/a-is/48071
  41. A. Patra, J.E. Bates, J. Sun, J.P. Perdew. PNAS 114, 44, E9188 (2017). https://doi.org/10.1073/pnas.1713320114
  42. M.S. Anderson, R.Q. Fugate, C.A. Swenson. J. Low Temperature Phys. 10, 3-4, 345 (1973). https://doi.org/10.1007/BF00654913
  43. A. Mishra, K. Dharmendra. J. Phys.: Conf. Ser. 2007, 1, 012007 (2021). https://doi.org/10.1088/1742-6596/2007/1/012007
  44. C.L. Guillaume, E. Gregoryanz, O. Degtyareva, M.I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S.V. Sinogeikin, H.-K. Mao. Nature Phys. 7, 3, 211 (2011). https://doi.org/10.1038/NPHYS1864
  45. S.V. Chernov. High Temperature 26, 2, 191 (1988)
  46. D.L. Heinz, R. Jeanloz. J. Appl. Phys. 55, 4, 885 (1984). https://doi.org/10.1063/1.333139
  47. C.-H. Nie, L.-R. Chen. Physica Status Solidi (b) 215, 2, 957 (1999). https://doi.org/10.1002/(sici)1521-3951(199910) 215:2<957::aid-pssb957>3.0.co;2-q
  48. M. Yokoo, N. Kawai, K.G. Nakamura, K. Kondo, Y. Tange, T. Tsuchiya. Phys. Rev. B 80, 10, 104114 (2009). https://doi.org/10.1103/PhysRevB.80.104114
  49. S.M. Dorfman, V.B. Prakapenka, Y. Meng, T.S. Duffy. J. Geophys. Res.: Solid Earth 117, B8, B08210 (2012). https://doi.org/10.1029/2012JB009292
  50. X. Wang, Z. Wang, P. Gao, C. Zhang, J. Lv, H. Wang, H. Liu, Y. Wang, Y. Ma. Nature Commun. 14, 1, 2924 (2023). https://doi.org/10.1038/s41467-023-38650-y
  51. P. Richard, A. Castellano, R. Bejaud, L. Baguet, J. Bouchet, G. Geneste, F. Bottin. Phys. Rev. Lett. 131, 20, 206101 (2023). https://doi.org/10.1103/PhysRevLett.131.206101
  52. A.M. Glezer, V.N. Varyukhin, A.A. Tomchuk, N.A. Maleeva. Doklady Phys. 59, 8, 360 (2014). https://doi.org/10.1134/S1028335814080059
  53. V.V. Popov, E.N. Popova. Mater. Trans 60, 7, 1209 (2019). https://doi.org/10.2320/matertrans.MF201913
  54. A.N. Ozerin, T.S. Kurkin, L.A. Ozerina, V.Yu. Dolmatov. Crystallogr. Rep. 53, 1, 60 (2008). https://doi.org/10.1134/S1063774508010070
  55. M.N. Magomedov. Phys. Metals. Metallogr. 114, 3, 207 (2013). https://doi.org/10.1134/S0031918X13030113
  56. M.N. Magomedov. Tech. Phys. 58, 12, 1789 (2013). https://doi.org/10.1134/S1063784213120153
  57. M.N. Magomedov. Tech. Phys. 68, 2, 209 (2023). https://doi.org/10.21883/TP.2023.02.55474.190-22
  58. R.K. Koju, Y. Mishin. Nanomater. 11, 9, 2348 (2021). https://doi.org/10.3390/nano11092348
  59. V.V. Popov, E.V. Osinnikova, A.Yu. Istomina, E.N. Popova, R.M. Falakhutdinov. Phys. Metals. Metallogr. 124, 6, 561 (2023). https://doi.org/10.1134/S0031918X23600781
  60. V.V. Popov, A.V. Sergeev, A.V. Stolbovsky. Phys. Metals. Metallogr. 118, 4, 354 (2017). https://doi.org/10.1134/S0031918X17040081
  61. R.V. Sundeev, A.V. Shalimova, A.M. Glezer, E.A. Pechina, M.V. Gorshenkov, G.I. Nosova. Mater. Sci. Eng.: A 679, 1 (2017). https://doi.org/10.1016/j.msea.2016.10.028
  62. D.Y. Kovalev, I.I. Chuev. Tech. Phys. 65, 10, 1652 (2020). https://doi.org/10.1134/S1063784220100102
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru