Magomedov M. N.
11Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
We studied the variation of the specific (per unit area) surface energy (σ) of a crystal from the normalized volume (v/v0) along the different isotherms based on the analytical method (i. e., without computer modeling). Here, v0 is the volume value at zero values of pressure and Kelvin temperature. It is shown that the function σ(v/v0) under a certain compression (v/v0)frS<1 passes into the negative value region. This behavior of the σ(v/v0) function at v/v0<(v/v0)frS should stimulate crystal fragmentation, in which the crystal will seek to increase its intercrystalline surface in any way. It is shown that the negative value of the function σ(v/v0) should stimulate both the fragmentation of the crystal structure and the heating of the fragmenting medium and the appearance of surface pressure in this medium due to the appearance of the inner surface. Calculations of the (v/v0)frS value for Ne, Li and Au crystals at different temperatures have been carried out. Based on the experimental data, the pressures were indicated, which correspond to the calculated (v/v0)frS values. It was shown that these pressures are quite achievable in modern experiments on the static compression of these crystals. Keywords: deformation, surface energy, nanocrystal, surface pressure.
- C.C. Zurkowski, J. Yang, F. Miozzi, S. Vitale, E.F. O'Bannon III, Z. Jenei, S. Chariton, V. Prakapenka, Y. Fei. Sci. Rep. 14, 1, 11412 (2024). https://doi.org/10.1038/s41598-024-61861-2
- P.W. Bridgman. Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure. Harvard University Press, Cambridge, Massachusetts (1964). 363 p. https://doi.org/10.4159/harvard.9780674731349
- S. Leoni, R. Ramlau, K. Meier, M. Schmidt, U. Schwarz. PNAS 105, 50, 19612 (2008). https://doi.org/10.1073/pnas.0805235105
- T.M. Gapontseva, M.V. Degtyarev, V.P. Pilyugin, T.I. Chashchukhina, L.M. Voronova, A.M. Patselov. Phys. Metals. Metallogr. 117, 4, 336 (2016). https://doi.org/10.1134/S0031918X16040062
- Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu. Mater. Sci. Eng.: R: Reports 133, 1 (2018). https://doi.org/10.1016/j.mser.2018.06.001
- A.M. Glezer, R.V. Sundeev, A.V. Shalimova, L.S. Metlov. Phys.-Uspekhi 66, 1, 32 (2023). https://doi.org/10.3367/UFNe.2021.07.039024
- V.K. Kumikov, Kh.B. Khokonov. Appl. Phys. 54, 3, 1346 (1983). https://doi.org/10.1063/1.332209
- S.N. Zhevnenko, I.S. Petrov, D. Scheiber, V.I. Razumovskiy. Acta Materialia 205, 116565 (2021). https://doi.org/10.1016/j.actamat.2020.116565
- S. Zhu, K. Xie, Q. Lin, R. Cao, F. Qiu. Adv. Colloid. Interface Sci. 315, 102905 (2023). https://doi.org/10.1016/j.cis.2023.102905
- M.N. Magomedov. Phys. Rev. B 109, 3, 035405 (2024). https://doi.org/10.1103/PhysRevB.109.035405
- M.N. Magomedov. Phys. Solid State 46, 5, 954 (2004). https://doi.org/10.1134/1.1744976
- M.N. Magomedov. Crystallogr. Rep. 62, 3, 480 (2017). https://doi.org/10.1134/S1063774517030142
- M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021). https://doi.org/10.1134/S1063783421090250
- M.N. Magomedov. Phys. Solid State 66, 3, 428 (2024)
- M.N. Magomedov. Tech. Phys. 58, 9, 1297 (2013). https://doi.org/10.1134/S106378421309020X
- M.N. Magomedov. Tech. Phys. 55, 9, 1382 (2010). https://doi.org/10.1134/S1063784210090240
- M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). https://doi.org/10.1134/S1063783420120197
- S.P. Kramynin. J. Phys. Chem. Solids 143, 109464 (2020). https://doi.org/10.1016/j.jpcs.2020.109464
- S.P. Kramynin. J. Phys. Chem. Solids 152, 109964 (2021). https://doi.org/10.1016/j.jpcs.2021.109964
- S.P. Kramynin. Phys. Metals. Metallogr. 123, 2, 107 (2022). https://doi.org/10.1134/S0031918X22020065
- S.P. Kramynin. Solid State Sci. 124, 106814 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106814
- A.K. Kyarov, A.I. Temrokov, B.V. Khaev. High Temperature 35, 3, 380 (1997)
- M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron. Neutron Technique 6, 3, 430 (2012). https://doi.org/10.1134/S1027451012050151
- M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron. Neutron Techniques 7, 6, 1114 (2013). https://doi.org/10.1134/S1027451013060104
- M.N. Magomedov. Tech. Phys. 61, 5, 722 (2016). https://doi.org/10.1134/S1063784216050145
- D.E. Grady. J. Mech. Phys. Solids 36, 3, 353 (1988). https://doi.org/10.1016/0022-5096(88)90015-4
- N. Amadou, T. de Resseguier. Phys. Rev. B 108, 17, 174109 (2023). https://doi.org/10.1103/PhysRevB.108.174109
- Y.Kh. Vekilov, O.M. Krasilnikov. Phys.-Uspekhi 52, 8, 831 (2009). https://doi.org/10.3367/UFNe.0179.200908f.0883
- L. Bellino, G. Florio, S. Giordano, G. Puglisi. Applications in Engineering Science 2, 100009 (2020). https://doi.org/10.1016/j.apples.2020.100009
- M.N. Magomedov. High Temperature 44, 4, 513 (2006). https://doi.org/10.1007/s10740-006-0064-5
- M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques 7, 4, 697 (2013). https://doi.org/10.1134/S1027451013030087
- M.N. Magomedov. High Temperature 47, 2, 219 (2009). https://doi.org/10.1134/S0018151X09020114
- M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). https://doi.org/10.21883/PSS.2022.07.54579.319
- R.E. Allen, F.W. De Wette. J. Chem. Phys. 51, 11, 4820 (1969). https://doi.org/10.1063/1.1671873
- R. Shuttleworth. Proceed. Phys. Soc. Section A 63, 5, 444 (1950). https://doi.org/10.1088/0370-1298/63/5/302
- W.R. Tyson, W.A. Miller. Surf. Sci. 62, 1, 267 (1977). https://doi.org/10.1016/0039-6028(77)90442-3
- L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar. Surface Sci. 411, 1-2, 186 (1998). https://doi.org/10.1016/s0039-6028(98)00363-x
- Q. Jiang, H.M. Lu, M. Zhao. J. Phys.: Condens. Matter 16, 4, 521 (2004). https://doi.org/10.1088/0953-8984/16/4/001
- B. Fu, W. Liu, Z. Li. Mater. Chem. Phys. 123, 2-3, 658 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.034
- B.B. Alchagirov, T.M. Taova, Kh.B. Khokonov. Trans. JWRI. Special Issue (Japan) 30, 287 (2001). https://repository.exst.jaxa.jp/dspace/handle/a-is/48071
- A. Patra, J.E. Bates, J. Sun, J.P. Perdew. PNAS 114, 44, E9188 (2017). https://doi.org/10.1073/pnas.1713320114
- M.S. Anderson, R.Q. Fugate, C.A. Swenson. J. Low Temperature Phys. 10, 3-4, 345 (1973). https://doi.org/10.1007/BF00654913
- A. Mishra, K. Dharmendra. J. Phys.: Conf. Ser. 2007, 1, 012007 (2021). https://doi.org/10.1088/1742-6596/2007/1/012007
- C.L. Guillaume, E. Gregoryanz, O. Degtyareva, M.I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S.V. Sinogeikin, H.-K. Mao. Nature Phys. 7, 3, 211 (2011). https://doi.org/10.1038/NPHYS1864
- S.V. Chernov. High Temperature 26, 2, 191 (1988)
- D.L. Heinz, R. Jeanloz. J. Appl. Phys. 55, 4, 885 (1984). https://doi.org/10.1063/1.333139
- C.-H. Nie, L.-R. Chen. Physica Status Solidi (b) 215, 2, 957 (1999). https://doi.org/10.1002/(sici)1521-3951(199910) 215:2<957::aid-pssb957>3.0.co;2-q
- M. Yokoo, N. Kawai, K.G. Nakamura, K. Kondo, Y. Tange, T. Tsuchiya. Phys. Rev. B 80, 10, 104114 (2009). https://doi.org/10.1103/PhysRevB.80.104114
- S.M. Dorfman, V.B. Prakapenka, Y. Meng, T.S. Duffy. J. Geophys. Res.: Solid Earth 117, B8, B08210 (2012). https://doi.org/10.1029/2012JB009292
- X. Wang, Z. Wang, P. Gao, C. Zhang, J. Lv, H. Wang, H. Liu, Y. Wang, Y. Ma. Nature Commun. 14, 1, 2924 (2023). https://doi.org/10.1038/s41467-023-38650-y
- P. Richard, A. Castellano, R. Bejaud, L. Baguet, J. Bouchet, G. Geneste, F. Bottin. Phys. Rev. Lett. 131, 20, 206101 (2023). https://doi.org/10.1103/PhysRevLett.131.206101
- A.M. Glezer, V.N. Varyukhin, A.A. Tomchuk, N.A. Maleeva. Doklady Phys. 59, 8, 360 (2014). https://doi.org/10.1134/S1028335814080059
- V.V. Popov, E.N. Popova. Mater. Trans 60, 7, 1209 (2019). https://doi.org/10.2320/matertrans.MF201913
- A.N. Ozerin, T.S. Kurkin, L.A. Ozerina, V.Yu. Dolmatov. Crystallogr. Rep. 53, 1, 60 (2008). https://doi.org/10.1134/S1063774508010070
- M.N. Magomedov. Phys. Metals. Metallogr. 114, 3, 207 (2013). https://doi.org/10.1134/S0031918X13030113
- M.N. Magomedov. Tech. Phys. 58, 12, 1789 (2013). https://doi.org/10.1134/S1063784213120153
- M.N. Magomedov. Tech. Phys. 68, 2, 209 (2023). https://doi.org/10.21883/TP.2023.02.55474.190-22
- R.K. Koju, Y. Mishin. Nanomater. 11, 9, 2348 (2021). https://doi.org/10.3390/nano11092348
- V.V. Popov, E.V. Osinnikova, A.Yu. Istomina, E.N. Popova, R.M. Falakhutdinov. Phys. Metals. Metallogr. 124, 6, 561 (2023). https://doi.org/10.1134/S0031918X23600781
- V.V. Popov, A.V. Sergeev, A.V. Stolbovsky. Phys. Metals. Metallogr. 118, 4, 354 (2017). https://doi.org/10.1134/S0031918X17040081
- R.V. Sundeev, A.V. Shalimova, A.M. Glezer, E.A. Pechina, M.V. Gorshenkov, G.I. Nosova. Mater. Sci. Eng.: A 679, 1 (2017). https://doi.org/10.1016/j.msea.2016.10.028
- D.Y. Kovalev, I.I. Chuev. Tech. Phys. 65, 10, 1652 (2020). https://doi.org/10.1134/S1063784220100102